This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230821 #24 Feb 25 2025 00:28:34 %S A230821 6,1,5,0,1,8,0,2,2,0,7,9,6,8,1,7,6,9,5,2,6,8,1,7,3,9,5,8,4,8,2,1,2,3, %T A230821 1,8,9,8,2,6,1,6,7,8,0,6,2,0,2,8,1,2,3,6,3,2,8,2,0,8,1,5,7,2,4,4,0,2, %U A230821 5,7,8,8,2,8,2,2,8,7,8,3,8,9,6,3,2,4,8,9,7,6,9,7,8,4,0,5,3,2,5,9,5,7,1,4,2 %N A230821 Decimal expansion of Product_{n>=3} cosh(Pi/n). %F A230821 From _Amiram Eldar_, Jul 30 2023: (Start) %F A230821 Equals exp(Sum_{k>=1} (2^(2*k)-1)*B(2*k)*(2*Pi)^(2*k)*(zeta(2*k)-1-1/2^(2*k))/(2*k*(2*k)!)), where B(k) is the k-th Bernoulli number. %F A230821 Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)*(zeta(2*k)-1-1/2^(2*k))/k). (End) %e A230821 6.15018022079681769526817395848212318982616780620281236328208157244... %p A230821 evalf(product(1/sech(Pi/k), k=3..infinity), 120) # _Vaclav Kotesovec_, Sep 20 2014 %t A230821 (* RealDigits[ N[ Product[ Cosh[ Pi/n], {n, 3, Infinity}], 111]][[1]] *) [This approach turns out to give incorrect numerical results. - _Vaclav Kotesovec_, Sep 20 2014] %t A230821 Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(-1)^(n+1) * (2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* _Vaclav Kotesovec_, Sep 20 2014 *) %o A230821 (PARI) default(realprecision,150); exp(sumpos(n=3, log(cosh(Pi/n)))) \\ _Vaclav Kotesovec_, Sep 20 2014 %Y A230821 Cf. A051762. %Y A230821 Cf. A027641, A027642. %K A230821 nonn,easy,cons %O A230821 1,1 %A A230821 _Robert G. Wilson v_, Oct 30 2013 %E A230821 Corrected by _Vaclav Kotesovec_, Sep 20 2014