This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230847 #16 May 16 2023 11:39:49 %S A230847 3,2,3,3,5,3,5,3,5,7,3,7,5,3,5,7,7,3,7,5,3,7,5,7,9,5,3,5,3,5,15,5,7,3, %T A230847 11,3,7,7,5,7,7,3,11,3,5,3,13,13,5,3,5,7,3,11,7,7,7,3,7,5,3,11,15,5,3, %U A230847 5,15,7,11,3,5,7,9,7,7,5,7,9,5,9,11,3,11,3,7,5,7,9,5,3,5,13,9,5,9,5,7 %N A230847 a(n) = 1 + A054541(n). %C A230847 Partial sums give A014688. %F A230847 a(n) = A230846(n) = A076368(n), n>1. - _R. J. Mathar_, May 16 2023 %e A230847 On the first quadrant of the square grid consider a diagram in which the n-th horizontal bar contains A000040(n) cells and in which the number of cells in the vertical bars gives 0 together with A000720 as shown below. a(n) is the sum of the length of the n-th horizontal boundary segment and the length of the n-th vertical boundary segment between the structure formed by the horizontal bars and the structure formed by the vertical bars, hence a(n) = A054541(n) + 1. The total length of the boundary segments from [0, 0] after n-th stage is A014688(n). %e A230847 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A230847 31 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A230847 29 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A230847 23 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | %e A230847 19 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | %e A230847 17 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | %e A230847 13 |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | %e A230847 11 |_ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | %e A230847 7 |_ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | %e A230847 5 |_ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | %e A230847 3 |_ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | | %e A230847 2 |_ _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| %e A230847 . %e A230847 . 0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 %e A230847 . %Y A230847 Cf. A000040, A014688, A054541, A076368. %K A230847 nonn %O A230847 1,1 %A A230847 _Omar E. Pol_, Nov 01 2013