This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230849 #18 Oct 31 2023 07:00:27 %S A230849 1,1,1,1,2,1,2,1,4,1,2,1,4,1,2,1,4,1,6,1,2,1,6,1,4,1,2,1,4,1,6,1,6,1, %T A230849 2,1,6,1,4,1,2,1,6,1,4,1,6,1,8,1,4,1,2,1,4,1,2,1,4,1,14,1,4,1,6,1,2,1, %U A230849 10,1,2,1,6,1,6,1,4,1,6,1,6,1,2,1,10,1,2,1 %N A230849 A075526 and A000012 interleaved. %C A230849 a(n) is also the length of the n-th edge of a staircase which represents the function pi(x) on the first quadrant of the square grid, see A000720. %C A230849 a(2n-1) is the length of the n-th horizontal edge in the staircase. %C A230849 a(2n) is the length of the n-th vertical edge in the staircase. %C A230849 For another version see A230850. %H A230849 Antti Karttunen, <a href="/A230849/b230849.txt">Table of n, a(n) for n = 1..20000</a> %e A230849 Illustration of initial terms, n = 1..22: %e A230849 . %e A230849 1 _ _| %e A230849 1 _ _ _ _ _ _| %e A230849 1 _ _ _ _| %e A230849 1 _ _| %e A230849 1 _ _ _ _| %e A230849 1 _ _| %e A230849 1 _ _ _ _| %e A230849 1 _ _| %e A230849 1 _ _| %e A230849 1 _| %e A230849 1 _| %e A230849 . %e A230849 . 1 1 2 2 4 2 4 2 4 6 2 %e A230849 . %e A230849 Drawing vertical line segments below the staircase (as shown below) we have that the number of cells in the vertical bars gives A000720. %e A230849 Drawing horizontal line segments above the staircase we have that the number of cells in the k-th horizontal bar is A006093(k). %e A230849 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A230849 30 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A230849 28 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A230849 22 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | %e A230849 18 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | %e A230849 16 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | %e A230849 12 |_ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | %e A230849 10 |_ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | %e A230849 6 |_ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | %e A230849 4 |_ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | %e A230849 2 |_ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | | %e A230849 1 |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| %e A230849 . %e A230849 . 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 %e A230849 . %t A230849 Riffle[Join[{1},Differences[Prime[Range[100]]]],1] (* _Paolo Xausa_, Oct 31 2023 *) %o A230849 (PARI) A230849(n) = if((n%2)&&(n>1),prime((n+1)/2)-prime(((n+1)/2)-1),1); \\ _Antti Karttunen_, Dec 23 2018 %Y A230849 Cf. A000012, A000040, A000720, A001223, A006093, A007504, A046992, A075526, A141042, A152535, A230850. %K A230849 nonn %O A230849 1,5 %A A230849 _Omar E. Pol_, Nov 01 2013