This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230902 #19 Jun 07 2024 09:24:16 %S A230902 2,5,6,8,11,14,15,17,18,23,24,26,29,32,33,35,38,41,42,45,47,51,53,54, %T A230902 56,59,62,65,69,71,72,74,77,78,83,86,87,89,95,96,98,99,101,104,105, %U A230902 107,113,114,119,122,123,125,126,128,131,134,135,137,141,143,146,149,152,153,155,158,159,161,162 %N A230902 Positive numbers such that half of the set of divisors are of the form x^2 + x*y + y^2 (A003136) and half not (A034020). %e A230902 Triangle read by rows in which row n lists the divisors of n begins: %e A230902 1(0^2+0*1+1^2); %e A230902 1(0^2+0*1+1^2), 2; %e A230902 1(0^2+0*1+1^2), 3(1^1+1*1+1^2); %e A230902 1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2); %e A230902 1(0^2+0*1+1^2), 5; %e A230902 1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 6; %e A230902 1(0^2+0*1+1^2), 7(1^1+1*2+2^2); %e A230902 1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2), 8; %e A230902 1(0^2+0*1+1^2), 3(1^1+1*1+1^2), 9; %e A230902 1(0^2+0*1+1^2), 2, 5, 10; %e A230902 1(0^2+0*1+1^2), 11; %e A230902 1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 4(0^2+0*2+2^2), 6, 12(2^2+2*2+2^2); %e A230902 1(0^2+0*1+1^2), 13(1^2+1*3+3^2); %e A230902 1(0^2+0*1+1^2), 2, 7(1^1+1*2+2^2), 14; %e A230902 1(0^2+0*1+1^1), 3(1^11+1*1+1^2), 5, 15, %e A230902 i.e. a(1)=2, a(2)=5, a(3)=6, a(4)=8, a(5)=11, a(6)=14, a(7)=15. %p A230902 isA003136 := proc(n) %p A230902 local x,y ; %p A230902 for x from 0 do %p A230902 if x^2 > n then %p A230902 return false; %p A230902 end if; %p A230902 for y from 0 do %p A230902 if x^2+x*y+y^2 = n then %p A230902 return true; %p A230902 elif x^2+x*y+y^2 > n then %p A230902 break; %p A230902 end if; %p A230902 end do: %p A230902 end do: %p A230902 end proc: %p A230902 isA230902 := proc(n) %p A230902 local a36,a20,d ; %p A230902 a36 := 0 ; %p A230902 a20 := 0 ; %p A230902 for d in numtheory[divisors](n) do %p A230902 if isA003136(d) then %p A230902 a36 := a36+1 ; %p A230902 else %p A230902 a20 := a20+1 ; %p A230902 end if; %p A230902 end do: %p A230902 simplify( a36=a20) ; %p A230902 end proc: %p A230902 for n from 0 to 200 do %p A230902 if isA230902(n) then %p A230902 printf("%d,",n); %p A230902 end if; %p A230902 end do: # _R. J. Mathar_, Nov 08 2013 %t A230902 A003136Q[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x*y + y^2, {x, y}, Integers]]]; %t A230902 okQ[n_] := With[{dd = Divisors[n]}, 2 Count[dd, _?A003136Q] == Length[dd]]; %t A230902 Select[Range[200], okQ] (* _Jean-François Alcover_, Jun 07 2024 *) %Y A230902 Cf. A027750, A230851. Subsequence of A000037. %K A230902 nonn %O A230902 1,1 %A A230902 _Juri-Stepan Gerasimov_, Oct 31 2013 %E A230902 Corrected by _R. J. Mathar_, Nov 08 2013