cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230902 Positive numbers such that half of the set of divisors are of the form x^2 + x*y + y^2 (A003136) and half not (A034020).

This page as a plain text file.
%I A230902 #19 Jun 07 2024 09:24:16
%S A230902 2,5,6,8,11,14,15,17,18,23,24,26,29,32,33,35,38,41,42,45,47,51,53,54,
%T A230902 56,59,62,65,69,71,72,74,77,78,83,86,87,89,95,96,98,99,101,104,105,
%U A230902 107,113,114,119,122,123,125,126,128,131,134,135,137,141,143,146,149,152,153,155,158,159,161,162
%N A230902 Positive numbers such that half of the set of divisors are of the form x^2 + x*y + y^2 (A003136) and half not (A034020).
%e A230902 Triangle read by rows in which row n lists the divisors of n begins:
%e A230902 1(0^2+0*1+1^2);
%e A230902 1(0^2+0*1+1^2), 2;
%e A230902 1(0^2+0*1+1^2), 3(1^1+1*1+1^2);
%e A230902 1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2);
%e A230902 1(0^2+0*1+1^2), 5;
%e A230902 1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 6;
%e A230902 1(0^2+0*1+1^2), 7(1^1+1*2+2^2);
%e A230902 1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2), 8;
%e A230902 1(0^2+0*1+1^2), 3(1^1+1*1+1^2), 9;
%e A230902 1(0^2+0*1+1^2), 2, 5, 10;
%e A230902 1(0^2+0*1+1^2), 11;
%e A230902 1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 4(0^2+0*2+2^2), 6, 12(2^2+2*2+2^2);
%e A230902 1(0^2+0*1+1^2), 13(1^2+1*3+3^2);
%e A230902 1(0^2+0*1+1^2), 2, 7(1^1+1*2+2^2), 14;
%e A230902 1(0^2+0*1+1^1), 3(1^11+1*1+1^2), 5, 15,
%e A230902 i.e. a(1)=2, a(2)=5, a(3)=6, a(4)=8, a(5)=11, a(6)=14, a(7)=15.
%p A230902 isA003136 := proc(n)
%p A230902     local x,y ;
%p A230902     for x from 0 do
%p A230902         if x^2 > n then
%p A230902             return false;
%p A230902         end if;
%p A230902         for y from 0 do
%p A230902             if x^2+x*y+y^2 = n then
%p A230902                 return true;
%p A230902             elif x^2+x*y+y^2 > n then
%p A230902                 break;
%p A230902             end if;
%p A230902         end do:
%p A230902     end do:
%p A230902 end proc:
%p A230902 isA230902 := proc(n)
%p A230902     local a36,a20,d ;
%p A230902     a36 := 0 ;
%p A230902     a20 := 0 ;
%p A230902     for d in numtheory[divisors](n) do
%p A230902         if isA003136(d) then
%p A230902             a36 := a36+1 ;
%p A230902         else
%p A230902             a20 := a20+1 ;
%p A230902         end if;
%p A230902     end do:
%p A230902     simplify( a36=a20) ;
%p A230902 end proc:
%p A230902 for n from 0 to 200 do
%p A230902     if isA230902(n) then
%p A230902     printf("%d,",n);
%p A230902     end if;
%p A230902 end do: # _R. J. Mathar_, Nov 08 2013
%t A230902 A003136Q[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x*y + y^2, {x, y}, Integers]]];
%t A230902 okQ[n_] := With[{dd = Divisors[n]}, 2 Count[dd, _?A003136Q] == Length[dd]];
%t A230902 Select[Range[200], okQ] (* _Jean-François Alcover_, Jun 07 2024 *)
%Y A230902 Cf. A027750, A230851. Subsequence of A000037.
%K A230902 nonn
%O A230902 1,1
%A A230902 _Juri-Stepan Gerasimov_, Oct 31 2013
%E A230902 Corrected by _R. J. Mathar_, Nov 08 2013