cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230951 Boustrophedon transform of Thue-Morse sequence A010059.

This page as a plain text file.
%I A230951 #15 Apr 18 2023 08:28:52
%S A230951 1,1,1,3,9,27,108,475,2421,13859,88254,617957,4720980,39070669,
%T A230951 348225424,3325303894,33871280413,366573108019,4200618576106,
%U A230951 50809739256049,646929695900154,8648812936664311,121132117170628444,1773647319453218254,27099334868109293640
%N A230951 Boustrophedon transform of Thue-Morse sequence A010059.
%H A230951 Reinhard Zumkeller, <a href="/A230951/b230951.txt">Table of n, a(n) for n = 0..400</a>
%H A230951 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>
%H A230951 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H A230951 Wikipedia, <a href="http://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>
%H A230951 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F A230951 a(n) = Sum_{k=0..n} A109449(n,k)*A010059(k).
%o A230951 (Haskell)
%o A230951 a230951 n = sum $ zipWith (*) (a109449_row n) $ map fromIntegral a010059_list
%o A230951 (Python)
%o A230951 from itertools import count, islice, accumulate
%o A230951 def A230951_gen(): # generator of terms
%o A230951     blist = tuple()
%o A230951     for i in count(0):
%o A230951         yield (blist := tuple(accumulate(reversed(blist), initial=i.bit_count()&1^1)))[-1]
%o A230951 A230951_list = list(islice(A230951_gen(),30)) # _Chai Wah Wu_, Apr 17 2023
%Y A230951 Cf. A029885, A230950, A230952.
%Y A230951 Cf. A010059, A109449.
%K A230951 nonn
%O A230951 0,4
%A A230951 _Reinhard Zumkeller_, Nov 03 2013