cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231001 Number of years after which an entire year can have the same calendar, in the Julian calendar.

This page as a plain text file.
%I A231001 #11 Jun 19 2023 11:57:10
%S A231001 0,6,11,17,22,28,34,39,45,50,56,62,67,73,78,84,90,95,101,106,112,118,
%T A231001 123,129,134,140,146,151,157,162,168,174,179,185,190,196,202,207,213,
%U A231001 218,224,230,235,241,246,252,258,263,269,274,280,286,291,297,302,308,314,319,325
%N A231001 Number of years after which an entire year can have the same calendar, in the Julian calendar.
%C A231001 In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
%C A231001 Assuming this fact, this sequence is periodic with a period of 28.
%C A231001 This is a subsequence of A231000.
%H A231001 Colin Barker, <a href="/A231001/b231001.txt">Table of n, a(n) for n = 0..1000</a>
%H A231001 Time And Date, <a href="http://www.timeanddate.com/calendar/repeating.html">Repeating Calendar</a>
%H A231001 Time And Date, <a href="http://www.timeanddate.com/calendar/julian-calendar.html">Julian Calendar</a>
%H A231001 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A231001 From _Colin Barker_, Oct 17 2019: (Start)
%F A231001 G.f.: x*(2 + 3*x + 2*x^2)*(3 - 2*x + 3*x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
%F A231001 a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
%F A231001 (End)
%t A231001 LinearRecurrence[{1,0,0,0,1,-1},{0,6,11,17,22,28},60] (* _Harvey P. Dale_, Jun 19 2023 *)
%o A231001 (PARI) for(i=0,420,for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7),print1(i", ");break)))
%o A231001 (PARI) concat(0, Vec(x*(2 + 3*x + 2*x^2)*(3 - 2*x + 3*x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ _Colin Barker_, Oct 17 2019
%Y A231001 Cf. A230995-A231014.
%Y A231001 Cf. A230996 (Gregorian calendar).
%K A231001 nonn,easy
%O A231001 0,2
%A A231001 _Aswini Vaidyanathan_, Nov 02 2013