This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231014 #4 Nov 02 2013 23:41:06 %S A231014 1,2,4,5,7,10,11,12,13,16,19,21,24,25,27,28,30,33,36,39,41,42,44,45, %T A231014 47,48,49,50,51,53,56,58,59,61,62,65,66,67,70,71,73,74,76,79,82,83,84, %U A231014 85,87,88,90,91,93,96,97,99,100,102,104,105,107,108,111,113,116,119,120 %N A231014 Number of months after which it is not possible to have the same calendar for the entire month with the same number of days, in the Julian calendar. %C A231014 In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years. %C A231014 Assuming this fact, this sequence is periodic with a period of 336. %C A231014 This is the complement of A231011. %H A231014 Time And Date, <a href="http://www.timeanddate.com/calendar/repeating-month.html">Repeating Months</a> %H A231014 Time And Date, <a href="http://www.timeanddate.com/calendar/julian-calendar.html">Julian Calendar</a> %o A231014 (PARI) m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,j=0;for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1]&&x[(q%336)+1]==x[((q+p)%336)+1],j=1;break));if(j==0,print1(p", "))) %Y A231014 Cf. A230995-A231014. %Y A231014 Cf. A231009 (Gregorian calendar). %K A231014 nonn,easy %O A231014 1,2 %A A231014 _Aswini Vaidyanathan_, Nov 02 2013