This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231086 #49 Mar 01 2025 03:19:49 %S A231086 18,40,54,70,78,88,100,102,112,138,160,174,196,198,208,220,222,258, %T A231086 270,280,304,306,318,340,348,350,352,364,366,378,390,400,414,438,448, %U A231086 460,462,474,490,498,520,532,544,550,558,570,580,606,616,618,640,642,648 %N A231086 Initial members of abundant twins, i.e., values of k such that (k, k+2) are both abundant numbers. %C A231086 The first odd term is <= 76728582876430878992529528245373 (see A294025). Note that there are infinitely many odd terms, since if k is an odd term then 2*t*k*(k+2) + k are odd terms for all t >= 0. - _Jianing Song_, Nov 13 2022 %C A231086 From _Amiram Eldar_, May 30 2023: (Start) %C A231086 The least odd term is larger than 10^11. %C A231086 The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 81, 820, 8074, 80410, 804623, 8040362, 80414534, 804257458, 8042148484, ... . Apparently, the asymptotic density of this sequence exists and equals 0.08042... . (End) %H A231086 Amiram Eldar, <a href="/A231086/b231086.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..5000 from Shyam Sunder Gupta) %F A231086 a(n) = A005101(A303741(n)). - _Amiram Eldar_, Mar 01 2025 %e A231086 18, 20 are abundant, thus the smaller number is listed. %p A231086 withnumtheory: select(n->sigma(n)>2*n and sigma(n+1)<2*(n+1) and sigma(n+2)>2*(n+2),[$1..700]); # _Muniru A Asiru_, Jun 24 2018 %t A231086 AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a2 = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 1, AppendTo[a2, n - 2]], m = 0], {n, 2, 100000, 2}];a2 %t A231086 Module[{nn=650,sa},sa=Table[If[DivisorSigma[1,n]>2n,1,0],{n,nn}];Transpose[ SequencePosition[sa,{1,0,1}]]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* _Harvey P. Dale_, May 20 2016 *) %o A231086 (PARI) is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 \\ _Charles R Greathouse IV_, Feb 21 2017 %o A231086 (GAP) A:=Filtered([1..700],n->Sigma(n)>2*n);; a:=List(Filtered([1..Length(A)-1],i->A[i+1]=A[i]+2),j->A[j]); # _Muniru A Asiru_, Jun 24 2018 %Y A231086 Cf. A005101, A096399, A108926, A231088, A231089, A231090, A231092, A231093, A303741. %K A231086 nonn %O A231086 1,1 %A A231086 _Shyam Sunder Gupta_, Nov 03 2013