cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231091 Number of distinct (modulo rotation) unicursal star polygons (not necessarily regular, no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.

This page as a plain text file.
%I A231091 #28 Mar 01 2024 14:23:36
%S A231091 0,0,0,0,1,1,5,27,175,1533,14361,151575,1735869,21594863,289365383,
%T A231091 4158887007,63822480809,1041820050629,18027531255745,329658402237171,
%U A231091 6352776451924233,128686951765990343,2733851297673484765,60781108703102022027,1411481990523638719737
%N A231091 Number of distinct (modulo rotation) unicursal star polygons (not necessarily regular, no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.
%C A231091 For polygons in general see A000939 and A000949, and especially the Golomb-Welch reference. - _N. J. A. Sloane_, Nov 21 2013
%H A231091 Andrew Howroyd, <a href="/A231091/b231091.txt">Table of n, a(n) for n = 1..200</a>
%H A231091 Stewart Gordon, <a href="/A231091/a231091.svg">The five possible stars for n=7</a> (SVG file)
%H A231091 Wikipedia, <a href="https://en.wikipedia.org/wiki/Unicursal_hexagram">Unicursal hexagram</a>
%F A231091 a(n) = (A370068(n) + A283184(n/2-1)/2)/2 for even n >= 4; a(n) = A370068(n)/2 for odd n. - _Andrew Howroyd_, Feb 24 2024
%e A231091 For n=5, only solution is the regular pentagram.
%e A231091 For n=6, only solution is the unicursal hexagram (see Wikipedia link).
%e A231091 For n=7, two regular heptagrams and three irregular forms are possible.
%o A231091 (PARI) \\ Requires a370068 from A370068, b(n) is A283184.
%o A231091 b(n)={subst(serlaplace(polcoef((1 - x)/(1 + (1 - 2*y)*x + 2*y*x^2) + O(x*x^n), n)), y, 1)}
%o A231091 a(n)={(if(n%2==0 && n > 2, b(n/2-1)/2) + a370068(n))/2} \\ _Andrew Howroyd_, Mar 01 2024
%Y A231091 Cf. A000939 (if edges may join adjacent vertices), A000940, A002816 (rotations and reflections counted separately), A326411, A370459 (up to rotations and reflections), A370068 (directed edges).
%Y A231091 Cf. A283184.
%K A231091 nonn,nice
%O A231091 1,7
%A A231091 _Stewart Gordon_, Nov 03 2013
%E A231091 a(15) onwards from _Andrew Howroyd_, Feb 23 2024