cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231095 Decimal expansion of the power tower of Euler constant gamma.

This page as a plain text file.
%I A231095 #28 Oct 26 2014 17:54:15
%S A231095 6,8,5,9,4,7,0,3,5,1,6,7,4,2,8,4,8,1,8,7,5,7,3,5,9,6,1,9,8,0,4,1,7,3,
%T A231095 5,8,7,4,8,8,6,2,1,4,1,8,7,0,3,0,1,5,0,6,7,0,1,8,6,6,8,5,8,1,7,0,3,0,
%U A231095 1,8,7,6,7,1,4,6,9,5,7,3,8,5,6,1,7,8,3,7,3,7,0,1,6,5,9,1,1,1,0,4,8,9,1,5,0
%N A231095 Decimal expansion of the power tower of Euler constant gamma.
%H A231095 Stanislav Sykora, <a href="/A231095/b231095.txt">Table of n, a(n) for n = 0..2000</a>
%H A231095 Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler_constant">Euler-Mascheroni constant</a>
%H A231095 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>
%H A231095 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F A231095 In general, for 1/E^E <= c < 1, c^c^c^... = LambertW(log(1/c))/log(1/c). Hence, this number is LambertW(log(1/gamma))/log(1/gamma).
%e A231095 0.685947035167428481875735 ...
%p A231095 evalf(-LambertW(-log(gamma))/log(gamma), 120); # _Vaclav Kotesovec_, Oct 26 2014
%t A231095 c = EulerGamma; RealDigits[ ProductLog[-Log[c]]/Log[c], 10, 111] (* _Robert G. Wilson v_, Oct 24 2014 *)
%o A231095 (PARI) -lambertw(-log(Euler))/log(Euler)
%Y A231095 Cf. A001620.
%K A231095 nonn,cons
%O A231095 0,1
%A A231095 _Stanislav Sykora_, Nov 03 2013