cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231096 Decimal expansion of the power tower of the inverse of golden ratio.

This page as a plain text file.
%I A231096 #20 Apr 24 2016 12:45:42
%S A231096 7,1,0,4,3,9,2,8,7,1,5,6,5,0,3,1,8,8,6,6,9,3,4,5,8,9,3,0,6,0,7,2,1,1,
%T A231096 3,2,4,8,2,8,4,5,8,4,3,9,4,3,4,4,6,0,9,6,9,0,0,8,9,5,1,4,2,9,9,1,6,0,
%U A231096 1,5,9,7,2,6,0,9,6,7,2,7,3,3,9,9,0,5,9,4,6,5,3,5,7,2,9,5,5,6,1,3,9,2,5,3,2
%N A231096 Decimal expansion of the power tower of the inverse of golden ratio.
%C A231096 Also the only solution of x*phi^x = 1.
%H A231096 Stanislav Sykora, <a href="/A231096/b231096.txt">Table of n, a(n) for n = 0..1999</a>
%H A231096 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>
%H A231096 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F A231096 When 1/E^E <= c < 1, then c^c^c^... = LambertW(log(1/c))/log(1/c).
%e A231096 0.710439287156503188669345...
%t A231096 RealDigits[ LambertW[ Log[ GoldenRatio]]/Log[ GoldenRatio], 10, 111][[1]] (* _Robert G. Wilson v_, Feb 11 2015 *)
%o A231096 (PARI) lambertw(log(phi))/log(phi)
%Y A231096 Cf. A094214 (1/phi), A001622 (phi), A231095 (power tower of Gamma).
%K A231096 nonn,cons
%O A231096 0,1
%A A231096 _Stanislav Sykora_, Nov 04 2013