cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231097 Decimal expansion of the power tower of the ratio e/Pi.

This page as a plain text file.
%I A231097 #14 May 17 2023 20:47:44
%S A231097 8,8,0,3,6,7,7,7,8,9,8,1,7,3,4,6,2,1,8,2,6,7,4,9,8,5,2,8,5,4,4,2,0,7,
%T A231097 1,1,4,5,9,5,7,9,9,6,3,4,7,6,6,3,4,9,2,9,1,6,4,8,1,9,6,3,6,2,0,5,7,2,
%U A231097 4,7,6,6,4,9,9,9,0,3,9,9,4,2,0,4,2,8,3,9,1,9,8,4,2,2,0,8,1,8,7,4,6,6,1,5,9
%N A231097 Decimal expansion of the power tower of the ratio e/Pi.
%C A231097 This infinite tetration limit of (e/Pi)^^n is also the only solution of x*(Pi/e)^x = 1.
%H A231097 Stanislav Sykora, <a href="/A231097/b231097.txt">Table of n, a(n) for n = 0..2000</a>
%H A231097 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>.
%H A231097 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetration">Tetration</a>.
%F A231097 When 1/e^e <= c < 1, then c^c^c^... = LambertW(log(1/c))/log(1/c).
%e A231097 0.88036777898173462182674985...
%t A231097 RealDigits[ProductLog[Log[Pi] - 1]/(Log[Pi] - 1), 10, 120][[1]] (* _Amiram Eldar_, May 17 2023 *)
%o A231097 (PARI) lambertw(log(Pi)-1)/(log(Pi)-1)
%Y A231097 Cf. A061360 (e/Pi), A231098 (tetration of Pi/e).
%K A231097 nonn,cons,easy
%O A231097 0,1
%A A231097 _Stanislav Sykora_, Nov 06 2013