This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231101 #24 May 26 2024 01:31:54 %S A231101 3,0,2,9,2,15,29,21,74,108,137,330,461,741,1451,2124,3674,6477,10046, %T A231101 17499,29477,47637,81974,136068,224885,381990,633089,1056645,1779059, %U A231101 2955912,4948994 %N A231101 a(n) = 3*a(n-3) + a(n-2), a(0)=3, a(1)=0, a(2)=2. %C A231101 a(n) = r^n+s^n+t^n, where r,s,t are the roots of x^3-x-3. %C A231101 If p is prime then p divides a(p). %C A231101 Both this and the Perrin sequence are linear recurrences with a(n) depending on a(n-3) and a(n-2) but not on a(n-1), with the same initial conditions; both are sums of powers of roots of a cubic: Perrin: a(n) = r^n+s^n+t^n with r,s,t roots of x^3-x-1 this seq: a(n) = r^n+s^n+t^n with r,s,t roots of x^3-x-3. See crossrefs. %H A231101 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,3). %F A231101 a(n) = 3*a(n-3)+a(n-2), a(0)=3, a(1)=0, a(2)=2. %F A231101 a(n) = r^n+s^n+t^n, where r,s,t are the roots of x^3-x-3. %F A231101 G.f.: (x^2-3)/(3*x^3+x^2-1). %p A231101 a:=proc(n) option remember: %p A231101 if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else 3*a(n-3)+a(n-2) end if end proc: %p A231101 bign:=30: %p A231101 seq(a(n),n=0..bign); %t A231101 CoefficientList[Series[(x^2 - 3)/(3*x^3 + x^2 - 1), {x, 0, 50}], x] (* _Wesley Ivan Hurt_, May 26 2024 *) %Y A231101 Cf. A001608, A072328. %K A231101 nonn,easy %O A231101 0,1 %A A231101 _James R. Buddenhagen_, Nov 05 2013