A231126 Number of (n+1) X (3+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
6, 40, 308, 2260, 16812, 124644, 924900, 6862052, 50913012, 377747700, 2802692276, 20794524084, 154284599124, 1144711823796, 8493168927828, 63014915159220, 467538037568404, 3468890119531892, 25737368287958996, 190957944347003188
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..x..0..x....0..x..0..x....0..x..1..x....0..x..1..x....0..x..0..x ..x..1..x..2....x..1..x..2....x..2..x..0....x..2..x..2....x..1..x..0 ..2..x..1..x....2..x..1..x....0..x..1..x....0..x..2..x....2..x..2..x ..x..0..x..2....x..0..x..0....x..0..x..1....x..1..x..0....x..0..x..2 ..1..x..2..x....1..x..1..x....1..x..2..x....1..x..2..x....0..x..1..x ..x..2..x..1....x..0..x..0....x..1..x..1....x..2..x..1....x..2..x..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231131.
Formula
Empirical: a(n) = 7*a(n-1) + 8*a(n-2) - 32*a(n-3) - 38*a(n-4) + 40*a(n-5) + 56*a(n-6) - 16*a(n-7) - 16*a(n-8).
Empirical g.f.: 2*x*(3 - x - 10*x^2 - 12*x^3 + 18*x^4 + 8*x^5 - 8*x^6) / (1 - 7*x - 8*x^2 + 32*x^3 + 38*x^4 - 40*x^5 - 56*x^6 + 16*x^7 + 16*x^8). - Colin Barker, Mar 18 2018
Comments