A231128 Number of (n+1)X(5+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
44, 808, 16812, 336004, 6794904, 137063228, 2766762720, 55844298404, 1127200291672, 22752159616932, 459245479460980, 9269732838699552, 187106806814395160, 3776695456768760064, 76231479318266197484
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..x..0..x..1..x....0..x..1..x..1..x....0..x..1..x..0..x....0..x..1..x..1..x ..x..2..x..0..x..0....x..2..x..0..x..0....x..2..x..1..x..0....x..1..x..0..x..2 ..2..x..1..x..1..x....0..x..0..x..1..x....1..x..2..x..1..x....2..x..1..x..2..x ..x..0..x..2..x..0....x..1..x..0..x..0....x..0..x..0..x..0....x..0..x..0..x..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 19*a(n-1) +100*a(n-2) -1421*a(n-3) -4571*a(n-4) +41798*a(n-5) +109974*a(n-6) -656246*a(n-7) -1487069*a(n-8) +6049195*a(n-9) +10975788*a(n-10) -36061191*a(n-11) -49057120*a(n-12) +141523895*a(n-13) +153287320*a(n-14) -392824214*a(n-15) -336027204*a(n-16) +774335315*a(n-17) +540155584*a(n-18) -1090045760*a(n-19) -660547896*a(n-20) +1055685216*a(n-21) +727317632*a(n-22) -736522560*a(n-23) -722352896*a(n-24) +448343296*a(n-25) +529357824*a(n-26) -270748672*a(n-27) -249294848*a(n-28) +108318720*a(n-29) +74661888*a(n-30) -20348928*a(n-31) -12419072*a(n-32) +1310720*a(n-33) +786432*a(n-34)
Comments