cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231126 Number of (n+1) X (3+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 40, 308, 2260, 16812, 124644, 924900, 6862052, 50913012, 377747700, 2802692276, 20794524084, 154284599124, 1144711823796, 8493168927828, 63014915159220, 467538037568404, 3468890119531892, 25737368287958996, 190957944347003188
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Column 3 of A231131.

Examples

			Some solutions for n=5:
..0..x..0..x....0..x..0..x....0..x..1..x....0..x..1..x....0..x..0..x
..x..1..x..2....x..1..x..2....x..2..x..0....x..2..x..2....x..1..x..0
..2..x..1..x....2..x..1..x....0..x..1..x....0..x..2..x....2..x..2..x
..x..0..x..2....x..0..x..0....x..0..x..1....x..1..x..0....x..0..x..2
..1..x..2..x....1..x..1..x....1..x..2..x....1..x..2..x....0..x..1..x
..x..2..x..1....x..0..x..0....x..1..x..1....x..2..x..1....x..2..x..2
		

Crossrefs

Cf. A231131.

Formula

Empirical: a(n) = 7*a(n-1) + 8*a(n-2) - 32*a(n-3) - 38*a(n-4) + 40*a(n-5) + 56*a(n-6) - 16*a(n-7) - 16*a(n-8).
Empirical g.f.: 2*x*(3 - x - 10*x^2 - 12*x^3 + 18*x^4 + 8*x^5 - 8*x^6) / (1 - 7*x - 8*x^2 + 32*x^3 + 38*x^4 - 40*x^5 - 56*x^6 + 16*x^7 + 16*x^8). - Colin Barker, Mar 18 2018

A231128 Number of (n+1)X(5+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

44, 808, 16812, 336004, 6794904, 137063228, 2766762720, 55844298404, 1127200291672, 22752159616932, 459245479460980, 9269732838699552, 187106806814395160, 3776695456768760064, 76231479318266197484
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Column 5 of A231131

Examples

			Some solutions for n=3
..0..x..0..x..1..x....0..x..1..x..1..x....0..x..1..x..0..x....0..x..1..x..1..x
..x..2..x..0..x..0....x..2..x..0..x..0....x..2..x..1..x..0....x..1..x..0..x..2
..2..x..1..x..1..x....0..x..0..x..1..x....1..x..2..x..1..x....2..x..1..x..2..x
..x..0..x..2..x..0....x..1..x..0..x..0....x..0..x..0..x..0....x..0..x..0..x..1
		

Formula

Empirical: a(n) = 19*a(n-1) +100*a(n-2) -1421*a(n-3) -4571*a(n-4) +41798*a(n-5) +109974*a(n-6) -656246*a(n-7) -1487069*a(n-8) +6049195*a(n-9) +10975788*a(n-10) -36061191*a(n-11) -49057120*a(n-12) +141523895*a(n-13) +153287320*a(n-14) -392824214*a(n-15) -336027204*a(n-16) +774335315*a(n-17) +540155584*a(n-18) -1090045760*a(n-19) -660547896*a(n-20) +1055685216*a(n-21) +727317632*a(n-22) -736522560*a(n-23) -722352896*a(n-24) +448343296*a(n-25) +529357824*a(n-26) -270748672*a(n-27) -249294848*a(n-28) +108318720*a(n-29) +74661888*a(n-30) -20348928*a(n-31) -12419072*a(n-32) +1310720*a(n-33) +786432*a(n-34)

A231130 Number of (n+1)X(7+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

328, 16368, 924900, 50257244, 2766762720, 151928497692, 8349491299560, 458819265958556, 25213940794848972, 1385606097689928700, 76144709459504461524, 4184463747005748346676, 229953456825043397843448
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Column 7 of A231131

Examples

			Some solutions for n=2
..0..x..1..x..0..x..1..x....0..x..1..x..0..x..2..x....0..x..1..x..2..x..0..x
..x..1..x..0..x..1..x..0....x..2..x..1..x..2..x..0....x..2..x..1..x..0..x..2
..2..x..0..x..1..x..2..x....1..x..1..x..2..x..1..x....1..x..0..x..0..x..1..x
		

A231125 Number of (n+1) X (2+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

2, 8, 40, 176, 808, 3584, 16368, 72640, 331648, 1471872, 6719936, 29823488, 136161152, 604291584, 2758934016, 12244319232, 55902265856, 248097701888, 1132706802688, 5027022614528, 22951211032576, 101858889359360
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Examples

			Some solutions for n=5:
..0..x..1....0..x..0....0..x..1....0..x..0....0..x..1....0..x..0....0..x..1
..x..2..x....x..1..x....x..2..x....x..1..x....x..2..x....x..1..x....x..2..x
..1..x..2....2..x..0....2..x..0....0..x..2....1..x..2....1..x..1....0..x..0
..x..1..x....x..1..x....x..1..x....x..0..x....x..1..x....x..2..x....x..2..x
..2..x..0....2..x..0....2..x..0....2..x..0....0..x..0....2..x..0....0..x..2
..x..2..x....x..0..x....x..0..x....x..2..x....x..2..x....x..0..x....x..0..x
		

Crossrefs

Column 2 of A231131.

Formula

Empirical: a(n) = 22*a(n-2) - 36*a(n-4) + 16*a(n-6).
Empirical g.f.: 2*x*(1 + 4*x - 2*x^2) / (1 - 22*x^2 + 36*x^4 - 16*x^6). - Colin Barker, Sep 26 2018

A231127 Number of (n+1)X(4+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

16, 176, 2260, 27664, 336004, 4150352, 50257244, 621150768, 7520563372, 92952785328, 1125418461348, 13909988936720, 168414092245220, 2081570967982416, 25202456511185596, 311498292593207728
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Column 4 of A231131

Examples

			Some solutions for n=4
..0..x..1..x..2....0..x..1..x..2....0..x..0..x..0....0..x..1..x..2
..x..1..x..0..x....x..2..x..0..x....x..1..x..2..x....x..2..x..0..x
..0..x..0..x..2....0..x..1..x..2....2..x..0..x..2....0..x..1..x..2
..x..1..x..0..x....x..1..x..2..x....x..1..x..0..x....x..2..x..1..x
..0..x..0..x..2....2..x..1..x..1....2..x..2..x..2....1..x..0..x..0
		

Formula

Empirical: a(n) = 175*a(n-2) -4017*a(n-4) +34311*a(n-6) -146236*a(n-8) +322472*a(n-10) -291040*a(n-12) +116032*a(n-14) -24064*a(n-16) +1024*a(n-18)

A231129 Number of (n+1)X(6+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

120, 3584, 124644, 4150352, 137063228, 4614346288, 151928497692, 5118452297664, 168507419403536, 5677207375660208, 186902346005124780, 6296966415548143360, 207305819737090195456, 6984385124729232483872, 229936709033952423239528
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Column 6 of A231131

Examples

			Some solutions for n=2
..0..x..0..x..1..x..1....0..x..1..x..0..x..0....0..x..0..x..0..x..0
..x..2..x..1..x..2..x....x..1..x..0..x..1..x....x..1..x..1..x..1..x
..1..x..2..x..1..x..1....0..x..2..x..0..x..0....0..x..2..x..0..x..0
		

Formula

Empirical recurrence of order 90 (see link above)

A231124 Number of (n+1)X(n+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

1, 8, 308, 27664, 6794904, 4614346288, 8349491299560, 42088669314695072, 564457878709147238868, 21095556114328677203104400, 2097381737046509117354544061212, 581111029966060833293204483082983504
Offset: 1

Views

Author

R. H. Hardin, Nov 04 2013

Keywords

Comments

Diagonal of A231131

Examples

			Some solutions for n=4
..0..x..0..x..0....0..x..1..x..1....0..x..1..x..1....0..x..1..x..2
..x..1..x..2..x....x..2..x..0..x....x..1..x..2..x....x..2..x..0..x
..2..x..1..x..1....1..x..2..x..0....0..x..2..x..1....1..x..0..x..1
..x..1..x..0..x....x..0..x..2..x....x..2..x..0..x....x..2..x..0..x
..2..x..2..x..1....1..x..0..x..1....0..x..0..x..2....0..x..2..x..2
		
Showing 1-7 of 7 results.