A231150 Array of coefficients of numerator polynomials of the rational function p(n, x^(1/2)+x^(-1/2)), where p(n,x) is the n-th Chebyshev polynomial of the 1st kind.
1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 24, 33, 24, 8, 16, 60, 105, 105, 60, 16, 32, 144, 306, 387, 306, 144, 32, 64, 336, 840, 1281, 1281, 840, 336, 64, 128, 768, 2208, 3936, 4737, 3936, 2208, 768, 128, 256, 1728, 5616, 11448, 16065, 16065, 11448, 5616, 1728, 256
Offset: 0
Examples
First 6 rows: 1 1 .... 1 2 .... 3 ..... 2 4 .... 9 ..... 9 ...... 4 8 .... 24 .... 33 .... 24 .... 8 16 ... 60 .... 105 ... 105 ... 60 ... 16 The first 4 polynomials: 1, 1 + x, 2 + 3*x + 2*x^2, 4 + 9*x + 9*x^2 + 4*x^3.
Crossrefs
Cf. A231147.
Programs
-
Mathematica
z = 60; p[n_, x_] := p[n, x] = ChebyshevT[n, x]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> Sqrt[x] + 1/Sqrt[x]]]; Table[Expand[f1[n, x]], {n, 0, z/4}]; t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]