cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231150 Array of coefficients of numerator polynomials of the rational function p(n, x^(1/2)+x^(-1/2)), where p(n,x) is the n-th Chebyshev polynomial of the 1st kind.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 24, 33, 24, 8, 16, 60, 105, 105, 60, 16, 32, 144, 306, 387, 306, 144, 32, 64, 336, 840, 1281, 1281, 840, 336, 64, 128, 768, 2208, 3936, 4737, 3936, 2208, 768, 128, 256, 1728, 5616, 11448, 16065, 16065, 11448, 5616, 1728, 256
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2013

Keywords

Examples

			First 6 rows:
1
1 .... 1
2 .... 3 ..... 2
4 .... 9 ..... 9 ...... 4
8 .... 24 .... 33 .... 24 .... 8
16 ... 60 .... 105 ... 105 ... 60 ... 16
The first 4 polynomials: 1, 1 + x, 2 + 3*x + 2*x^2, 4 + 9*x + 9*x^2 + 4*x^3.
		

Crossrefs

Cf. A231147.

Programs

  • Mathematica
    z = 60; p[n_, x_] := p[n, x] = ChebyshevT[n, x]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> Sqrt[x] + 1/Sqrt[x]]]; Table[Expand[f1[n, x]], {n, 0, z/4}]; t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]