A231188 Coefficient table for the minimal polynomials of 2*sin(2*Pi/n). Rising powers of x.
0, 1, 0, 1, -3, 0, 1, -2, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 14, 0, -7, 0, 1, -2, 0, 1, -3, 0, 9, 0, -6, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, -1, 1, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, -7, 0, 14, 0, -7, 0, 1, 1, 0, -8, 0, 14, 0, -7, 0, 1, 2, 0, -4, 0, 1, 17, 0, -204, 0, 714, 0, -1122, 0, 935, 0, -442, 0, 119, 0, -17, 0, 1, -3, 0, 9, 0, -6, 0, 1
Offset: 1
Examples
The table a(n,m) starts: --------------------------------------------------------------------------------- n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1: 0 1 2: 0 1 3: -3 0 1 4: -2 1 5: 5 0 -5 0 1 6: -3 0 1 7: -7 0 14 0 -7 0 1 8: -2 0 1 9: -3 0 9 0 -6 0 1 10: 5 0 -5 0 1 11: -11 0 55 0 -77 0 44 0 -11 0 1 12: -1 1 13: 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 14: -7 0 14 0 -7 0 1 15: 1 0 -8 0 14 0 -7 0 1 16: 2 0 -4 0 1 17: 17 0 -204 0 714 0 -1122 0 935 0 -442 0 119 0 -17 0 1 ...
Formula
a(n,m) = [x^m] MP2sin2(n, x), n>=1, m = 0, 1, ..., A093819(n), with the minimal polynomials of 2*sin(2*Pi/n), given above in a comment in terms of the ones for sin(2*Pi/n).
Comments