This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231208 #50 Jul 01 2022 22:06:07 %S A231208 1,2,2,4,4,8,8,16,20,40,60,108,176,328,568,1040,1848,3388,6132,11332, %T A231208 20788,38576,71444,133256,248676,466264,875408,1649236,3112220, %U A231208 5888548,11160548,21198388,40329428,76865388,146720792,280498456,536986772,1029413396,1975848400,3797016444,7304942256,14068883556,27123215268,52341185672,101098109768,195444063640 %N A231208 Number of binary "privileged words" of length n. %C A231208 A word w is "privileged" if it is of length <= 1, or if it has a privileged prefix that appears exactly twice in w, once as a prefix and once as a suffix (which may overlap). %C A231208 All terms beyond a(0) are even because the 1's complement of a privileged word is again privileged (and different). - _M. F. Hasler_, Nov 05 2013 %H A231208 Gabriele Fici, <a href="http://bulletin.eatcs.org/index.php/beatcs/article/view/508">Open and Closed Words</a>, in Giovanni Pighizzini, ed., The Formal Language Theory Column, Bulletin of EATCS, 2017. %H A231208 M. Forsyth, A. Jayakumar, and J. Shallit, <a href="http://arxiv.org/abs/1311.7403">Remarks on Privileged Words</a>, arXiv preprint arXiv:1311.7403 [cs.FL], 2013. %H A231208 Daniel Gabric, <a href="https://arxiv.org/abs/2206.14273">Asymptotic bounds for the number of closed and privileged words</a>, arXiv:2206.14273 [math.CO], 2022. %H A231208 J. Peltomäki, <a href="https://doi.org/10.1016/j.tcs.2013.05.028">Introducing privileged words: privileged complexity of Sturmian words</a>, Theoret. Comput. Sci. 500 (2013), 57-67. %H A231208 J. Peltomäki, <a href="http://arxiv.org/abs/1306.6768">Privileged factors in the Thue-Morse word — a comparison of privileged words and palindromes</a>, arXiv:1306.6768 [math.CO], 2013-2015. %H A231208 J. Peltomäki, <a href="http://www.doria.fi/handle/10024/124473">Privileged Words and Sturmian Words</a>, Ph.D. Dissertation, TUCS Dissertations 214, 2016. %e A231208 For n = 5 the privileged words are {00000,00100,01010,01110,10001,10101,11011,11111}. %e A231208 See A235609 for the full list of privileged words. %e A231208 The least non-palindromic privileged word is 00101100, of length 8. - _M. F. Hasler_, Nov 05 2013 %o A231208 (PARI) A231208=n->{local(isp(w,n,p)=setsearch([0,2^(n-1)-2,2^(n-1)+1,2^n-1],w)&&return(1);for(i=1,n-2,(w-p=w>>i)%2^(n-i)&&next;for(j=1,i-1,(w>>j-p)%2^(n-i)||next(2));isp(p,n-i)&&return(1)));sum(i=1,2^(n-1)-1,isp(i,n),1)*2-!n} \\ _M. F. Hasler_, Nov 05 2013 %o A231208 (Python) %o A231208 from itertools import count, islice, product %o A231208 def comp(w): return "".join("2" if c == "1" else "1" for c in w) %o A231208 def agen(): %o A231208 prev, priv = 0, set("1"); yield 1 %o A231208 for d in count(2): %o A231208 yield 2*(len(priv) - prev) %o A231208 prev = len(priv) %o A231208 for p in product("12", repeat=d-1): %o A231208 w, passes = "1" + "".join(p), False %o A231208 if len(set(w)) == 1: passes = True %o A231208 elif len(w.lstrip(w[0])) != len(w.rstrip(w[0])): passes = False %o A231208 else: %o A231208 for i in range(1, len(w)): %o A231208 p, s = w[:i], w[-i:] %o A231208 if p == s and p not in w[1:-1] and p in priv: %o A231208 passes = True; break %o A231208 if passes: priv.add(w) %o A231208 print(list(islice(agen(), 20))) # _Michael S. Branicky_, Jul 01 2022 %Y A231208 Cf. A235609, A297184, A297185. %K A231208 nonn %O A231208 0,2 %A A231208 _Jeffrey Shallit_, Nov 05 2013 %E A231208 Terms a(22) to a(30) computed by Michael Forsyth %E A231208 More terms from Forsyth et al. (2013) added by _N. J. A. Sloane_, Jan 23 2014 %E A231208 Terms a(39)-a(45) from Peltomäki's dissertation (2016) added by _Jarkko Peltomäki_, Aug 24 2016