A231213 Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.
4, 9, 22, 59, 156, 413, 1098, 2919, 7760, 20633, 54862, 145875, 387876, 1031349, 2742322, 7291743, 19388504, 51553393, 137078774, 364487947, 969161452, 2576968397, 6852074138, 18219439575, 48444890080, 128813368009, 342510505246
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..0..0....0..0..1 ..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....1..1..0....0..0..1 ..0..2..2....0..0..0....0..0..1....0..1..1....0..1..1....1..1..0....2..2..1 ..0..2..2....0..0..0....0..1..1....0..1..1....0..0..1....1..1..0....2..2..1 ..0..2..2....0..0..0....0..1..1....0..0..0....0..0..1....1..1..0....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A231219.
Formula
Empirical: a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4).
Empirical g.f.: x*(4 - 3*x - x^2 - 2*x^3) / ((1 - x)*(1 - 2*x - x^2 - 2*x^3)). - Colin Barker, Sep 27 2018