A231214 Number of (n+1)X(3+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.
7, 22, 93, 408, 1793, 7844, 34609, 152421, 672446, 2965705, 13084976, 57727896, 254711179, 1123832479, 4958718969, 21879386505, 96539467026, 425965183425, 1879509395614, 8293059346003, 36591936428964, 161456668184975
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..1....0..0..0..1 ..0..0..1..1....1..1..1..0....0..0..1..1....0..0..0..1....0..0..0..1 ..1..1..0..0....1..1..1..0....0..0..1..1....0..0..1..1....0..0..0..1 ..1..1..0..0....1..1..1..0....2..2..0..0....2..2..1..1....0..0..0..1 ..0..0..0..0....1..1..1..0....2..2..0..0....2..2..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 8*a(n-1) -16*a(n-2) -11*a(n-3) +77*a(n-4) -147*a(n-5) +179*a(n-6) -109*a(n-7) +129*a(n-8) -231*a(n-9) +327*a(n-10) -280*a(n-11) -288*a(n-12) +548*a(n-13) -504*a(n-14) +486*a(n-15) -183*a(n-16) +48*a(n-17) -24*a(n-18) -8*a(n-19)
Comments