cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231213 Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

4, 9, 22, 59, 156, 413, 1098, 2919, 7760, 20633, 54862, 145875, 387876, 1031349, 2742322, 7291743, 19388504, 51553393, 137078774, 364487947, 969161452, 2576968397, 6852074138, 18219439575, 48444890080, 128813368009, 342510505246
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..0..0....0..0..1
..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....1..1..0....0..0..1
..0..2..2....0..0..0....0..0..1....0..1..1....0..1..1....1..1..0....2..2..1
..0..2..2....0..0..0....0..1..1....0..1..1....0..0..1....1..1..0....2..2..1
..0..2..2....0..0..0....0..1..1....0..0..0....0..0..1....1..1..0....2..2..1
		

Crossrefs

Column 2 of A231219.

Formula

Empirical: a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4).
Empirical g.f.: x*(4 - 3*x - x^2 - 2*x^3) / ((1 - x)*(1 - 2*x - x^2 - 2*x^3)). - Colin Barker, Sep 27 2018

A231214 Number of (n+1)X(3+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

7, 22, 93, 408, 1793, 7844, 34609, 152421, 672446, 2965705, 13084976, 57727896, 254711179, 1123832479, 4958718969, 21879386505, 96539467026, 425965183425, 1879509395614, 8293059346003, 36591936428964, 161456668184975
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 3 of A231219

Examples

			Some solutions for n=4
..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..1....0..0..0..1
..0..0..1..1....1..1..1..0....0..0..1..1....0..0..0..1....0..0..0..1
..1..1..0..0....1..1..1..0....0..0..1..1....0..0..1..1....0..0..0..1
..1..1..0..0....1..1..1..0....2..2..0..0....2..2..1..1....0..0..0..1
..0..0..0..0....1..1..1..0....2..2..0..0....2..2..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -16*a(n-2) -11*a(n-3) +77*a(n-4) -147*a(n-5) +179*a(n-6) -109*a(n-7) +129*a(n-8) -231*a(n-9) +327*a(n-10) -280*a(n-11) -288*a(n-12) +548*a(n-13) -504*a(n-14) +486*a(n-15) -183*a(n-16) +48*a(n-17) -24*a(n-18) -8*a(n-19)

A231215 Number of (n+1) X (4+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

12, 59, 408, 2892, 20027, 139438, 969461, 6745110, 46938804, 326645650, 2273218682, 15819608975, 110091246193, 766140117967, 5331683762978, 37103974744989, 258212125773531, 1796936761480570, 12505151919361622
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 4 of A231219.

Examples

			Some solutions for n=4:
..0..1..1..2..2....0..1..1..2..2....0..0..1..1..2....0..0..0..0..0
..0..1..1..2..2....0..1..1..2..2....0..0..1..1..2....0..0..1..1..0
..0..1..1..1..2....0..2..2..2..2....0..0..1..1..2....1..1..1..1..0
..0..1..1..1..2....0..2..2..1..1....0..0..1..1..2....1..1..1..1..0
..0..1..1..1..2....0..2..2..1..1....2..2..2..2..2....1..1..1..1..0
		

Crossrefs

Cf. A231219.

Formula

Empirical recurrence of order 68 (see link above).

A231216 Number of (n+1)X(5+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

23, 156, 1793, 20027, 226764, 2534951, 28439115, 318236849, 3565691309, 39935313475, 447387885717, 5011544754282, 56140525034274, 628886833447925, 7044850137852253, 78916780609087401, 884031405098540067
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 5 of A231219

Examples

			Some solutions for n=4
..0..0..0..0..0..1....0..1..1..1..1..0....0..1..1..2..2..2....0..0..0..1..1..1
..1..1..1..0..0..1....0..1..1..1..1..0....0..1..1..2..2..2....1..1..0..1..1..1
..1..1..1..0..0..1....0..0..1..1..1..0....0..1..1..2..2..2....1..1..0..2..2..1
..1..1..0..0..0..1....0..0..1..1..0..0....0..1..1..2..2..2....1..1..0..2..2..1
..0..0..0..0..0..1....0..0..1..1..0..0....0..0..0..0..0..0....0..0..0..2..2..1
		

A231217 Number of (n+1)X(6+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

44, 413, 7844, 139438, 2534951, 45593903, 820418528, 14743946094, 265057746273, 4764850607558, 85665969646863, 1540161104743915, 27690540964980741, 497845771876658529, 8950739306626864235, 160924591529710020492
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 6 of A231219

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..1
..1..1..0..0..1..1..1....0..0..0..1..1..2..2....0..0..2..2..0..0..1
..1..1..1..1..1..1..1....2..2..0..1..1..2..2....0..0..2..2..0..1..1
..1..1..1..1..1..1..1....2..2..0..2..2..2..2....1..1..1..0..0..1..1
..0..0..0..0..0..0..0....0..0..0..2..2..2..2....1..1..1..0..0..1..1
		

A231218 Number of (n+1)X(7+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

87, 1098, 34609, 969461, 28439115, 820418528, 23748656906, 685733582035, 19812622781057, 572302029497356, 16533962109257389, 477663753823928105, 13800046313373114629, 398691931165963350492, 11518505348614958772694
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 7 of A231219

Examples

			Some solutions for n=4
..0..0..0..0..0..1..1..1....0..0..0..0..0..0..1..1....0..0..0..0..0..0..1..1
..0..0..0..0..0..1..0..0....0..0..2..2..0..0..1..1....0..0..0..0..0..0..1..1
..1..1..0..0..0..1..0..0....0..0..2..2..1..1..1..1....1..1..1..1..1..1..2..2
..1..1..0..0..1..1..2..2....1..1..2..2..1..0..0..1....1..0..0..1..1..1..2..2
..0..0..0..0..1..1..2..2....1..1..1..1..1..0..0..1....1..0..0..1..1..1..2..2
		

A231212 Number of (n+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

3, 9, 93, 2892, 226764, 45593903, 23748656906, 31822302958042
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Diagonal of A231219

Examples

			Some solutions for n=4
..0..0..0..0..1....0..0..0..1..1....0..0..1..1..2....0..1..1..1..1
..1..1..0..0..1....0..0..0..1..1....0..0..1..1..2....0..1..1..1..1
..1..1..1..1..1....1..1..0..1..1....2..2..2..2..2....0..0..0..0..0
..1..0..0..0..0....1..1..0..0..1....2..2..0..0..0....0..1..1..0..0
..1..0..0..0..0....1..1..0..0..1....2..2..0..0..0....0..1..1..0..0
		
Showing 1-7 of 7 results.