A231222 Number of (n+2)X(3+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
3, 8, 21, 54, 185, 552, 1799, 5900, 19185, 63834, 210899, 701724, 2336721, 7786742, 25984043, 86721124, 289569291, 967130226, 3230474181, 10792263708, 36056118433, 120467821634, 402509354825, 1344900626136, 4493772713417
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1 ..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1 ..1..1..1..1..1....1..1..0..0..0....0..0..0..1..1....0..0..0..1..1 ..1..1..1..1..1....1..1..0..0..0....1..1..1..0..0....0..0..0..2..2 ..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2 ..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +8*a(n-2) -18*a(n-3) -31*a(n-4) +39*a(n-5) +49*a(n-6) -73*a(n-7) +64*a(n-8) +15*a(n-9) -157*a(n-10) +98*a(n-11) +28*a(n-12) -24*a(n-13)
Comments