A231221
Number of (n+2) X (2+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
2, 4, 8, 17, 45, 103, 264, 676, 1724, 4501, 11679, 30579, 80180, 210494, 553858, 1457853, 3840945, 10124071, 26693522, 70402100, 185706800, 489925347, 1292616577, 3410640207, 8999588762, 23747752874, 62666069376, 165367179091
Offset: 1
Some solutions for n=5:
..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0
..1..1..0..0....0..0..1..1....0..0..1..1....0..0..1..1....1..1..1..1
..1..1..0..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1
..1..1..0..0....1..1..0..0....1..1..0..0....1..1..2..2....1..1..1..1
..0..0..1..1....0..0..0..0....1..1..0..0....2..2..2..2....0..0..0..0
..0..0..1..1....0..0..0..0....1..1..0..0....2..2..2..2....0..0..0..0
A231222
Number of (n+2)X(3+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
3, 8, 21, 54, 185, 552, 1799, 5900, 19185, 63834, 210899, 701724, 2336721, 7786742, 25984043, 86721124, 289569291, 967130226, 3230474181, 10792263708, 36056118433, 120467821634, 402509354825, 1344900626136, 4493772713417
Offset: 1
Some solutions for n=4
..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
..1..1..1..1..1....1..1..0..0..0....0..0..0..1..1....0..0..0..1..1
..1..1..1..1..1....1..1..0..0..0....1..1..1..0..0....0..0..0..2..2
..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
A231223
Number of (n+2)X(4+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
6, 17, 54, 182, 812, 2962, 12179, 50196, 205057, 864270, 3593492, 15094003, 63545858, 267204717, 1127304903, 4753575829, 20059305680, 84691952803, 357558971694, 1510077601850, 6377796652031, 26938452104661, 113791455759187
Offset: 1
Some solutions for n=5
..0..0..0..0..1..1....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..1..1..1
..0..0..0..0..1..1....0..0..1..1..0..0....0..0..1..1..1..1....0..0..0..1..1..1
..0..0..0..1..1..1....1..1..1..1..1..1....0..0..0..1..1..1....0..0..0..0..1..1
..0..0..1..1..2..2....1..1..1..1..1..1....2..2..0..0..0..0....0..0..0..0..1..1
..1..1..1..2..2..2....2..2..1..1..1..1....2..2..2..0..0..0....0..0..1..1..0..0
..1..1..2..2..2..2....2..2..2..2..2..2....2..2..2..0..0..0....1..1..1..1..0..0
..1..1..2..2..2..2....2..2..2..2..2..2....2..2..2..0..0..0....1..1..1..1..0..0
A231224
Number of (n+2)X(5+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
11, 45, 185, 812, 4298, 19935, 102113, 524113, 2687777, 14197596, 74308295, 393206009, 2088107591, 11086538469, 59103852278, 315153667732, 1682280633028, 8989204931719, 48042619335921, 256910321615776, 1374182610970469
Offset: 1
Some solutions for n=5
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....1..1..0..0..1..1..1
..2..2..0..0..1..1..1....0..0..0..1..1..1..1....1..1..1..1..1..1..1
..2..2..2..0..0..0..0....0..0..1..1..1..1..1....1..1..1..0..0..0..0
..2..2..2..2..0..0..0....1..1..1..1..1..1..1....1..1..0..0..0..0..0
..2..2..2..2..0..0..0....1..1..1..1..1..1..1....1..1..0..0..0..0..0
A231225
Number of (n+2)X(6+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
22, 103, 552, 2962, 19935, 117178, 748665, 4870988, 31483476, 210326324, 1392987995, 9318227740, 62685201542, 421269716690, 2844334077278, 19215230536497, 129923432463015, 879756395566799, 5958107153462019
Offset: 1
Some solutions for n=4
..0..0..0..0..1..1..1..1....0..0..1..1..2..2..1..1....0..0..1..1..1..1..1..1
..0..0..0..0..1..1..1..1....0..0..1..1..2..2..1..1....0..0..1..1..1..1..1..1
..1..1..1..0..0..1..1..1....0..0..0..1..1..2..2..1....0..0..0..1..1..1..1..1
..1..1..1..1..0..0..1..1....0..0..0..1..1..2..2..1....0..0..0..2..2..1..1..1
..1..1..1..1..0..0..0..0....0..0..1..1..2..2..1..1....0..0..2..2..2..2..1..1
..1..1..1..1..0..0..0..0....0..0..1..1..2..2..1..1....0..0..2..2..2..2..1..1
A231226
Number of (n+2)X(7+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
43, 264, 1799, 12179, 102113, 748665, 5930126, 48317804, 390225796, 3267809753, 27184285056, 228686827731, 1938757497433, 16432432134267, 140079591842774, 1195812427594821, 10221439423090293, 87552309666153978, 750295493573918472
Offset: 1
Some solutions for n=3
..0..0..1..1..1..1..1..0..0....0..0..0..0..0..0..1..1..1
..0..0..1..1..1..1..1..0..0....0..0..0..0..0..0..1..1..1
..0..0..1..1..1..1..1..0..0....2..2..0..0..0..0..1..1..1
..1..1..0..0..1..1..0..0..0....2..2..2..0..0..0..1..1..1
..1..1..0..0..0..0..0..0..0....2..2..2..0..0..0..1..1..1
A231220
Number of (n+2)X(n+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
Original entry on oeis.org
1, 4, 21, 182, 4298, 117178, 5930126, 495739986
Offset: 1
Some solutions for n=4
..0..0..0..0..0..0....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1
..0..0..1..1..0..0....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1
..1..1..1..1..1..1....1..1..1..0..0..0....0..0..0..0..1..1....0..0..1..1..1..1
..1..1..1..1..1..1....1..1..1..0..0..0....0..0..0..0..1..1....1..1..1..1..1..1
..2..2..2..2..2..2....0..0..0..1..1..1....0..0..0..0..1..1....1..1..1..1..1..1
..2..2..2..2..2..2....0..0..0..1..1..1....0..0..0..0..1..1....1..1..1..1..1..1
Showing 1-7 of 7 results.
Comments