cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231221 Number of (n+2) X (2+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

2, 4, 8, 17, 45, 103, 264, 676, 1724, 4501, 11679, 30579, 80180, 210494, 553858, 1457853, 3840945, 10124071, 26693522, 70402100, 185706800, 489925347, 1292616577, 3410640207, 8999588762, 23747752874, 62666069376, 165367179091
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Examples

			Some solutions for n=5:
..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0
..1..1..0..0....0..0..1..1....0..0..1..1....0..0..1..1....1..1..1..1
..1..1..0..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1
..1..1..0..0....1..1..0..0....1..1..0..0....1..1..2..2....1..1..1..1
..0..0..1..1....0..0..0..0....1..1..0..0....2..2..2..2....0..0..0..0
..0..0..1..1....0..0..0..0....1..1..0..0....2..2..2..2....0..0..0..0
		

Crossrefs

Column 2 of A231227.

Formula

Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - 6*a(n-3) - 7*a(n-4) + 5*a(n-5) - a(n-6) + 6*a(n-7) + 17*a(n-8) - 20*a(n-9) - 2*a(n-10) + 4*a(n-11).
Empirical g.f.: x*(2 - 2*x - 8*x^2 - 3*x^3 + 16*x^4 + 5*x^6 + 19*x^7 - 34*x^8 - 2*x^9 + 8*x^10) / ((1 - x)*(1 - 2*x - 4*x^2 + 2*x^3 + 9*x^4 + 4*x^5 + 5*x^6 - x^7 - 18*x^8 + 2*x^9 + 4*x^10)). - Colin Barker, Sep 27 2018

A231222 Number of (n+2)X(3+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

3, 8, 21, 54, 185, 552, 1799, 5900, 19185, 63834, 210899, 701724, 2336721, 7786742, 25984043, 86721124, 289569291, 967130226, 3230474181, 10792263708, 36056118433, 120467821634, 402509354825, 1344900626136, 4493772713417
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 3 of A231227

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
..0..0..0..0..0....0..0..1..1..1....0..0..0..1..1....0..0..1..1..1
..1..1..1..1..1....1..1..0..0..0....0..0..0..1..1....0..0..0..1..1
..1..1..1..1..1....1..1..0..0..0....1..1..1..0..0....0..0..0..2..2
..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
..0..0..0..0..0....1..1..0..0..0....1..1..1..0..0....0..0..2..2..2
		

Formula

Empirical: a(n) = 3*a(n-1) +8*a(n-2) -18*a(n-3) -31*a(n-4) +39*a(n-5) +49*a(n-6) -73*a(n-7) +64*a(n-8) +15*a(n-9) -157*a(n-10) +98*a(n-11) +28*a(n-12) -24*a(n-13)

A231223 Number of (n+2)X(4+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 17, 54, 182, 812, 2962, 12179, 50196, 205057, 864270, 3593492, 15094003, 63545858, 267204717, 1127304903, 4753575829, 20059305680, 84691952803, 357558971694, 1510077601850, 6377796652031, 26938452104661, 113791455759187
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 4 of A231227

Examples

			Some solutions for n=5
..0..0..0..0..1..1....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..1..1..1
..0..0..0..0..1..1....0..0..1..1..0..0....0..0..1..1..1..1....0..0..0..1..1..1
..0..0..0..1..1..1....1..1..1..1..1..1....0..0..0..1..1..1....0..0..0..0..1..1
..0..0..1..1..2..2....1..1..1..1..1..1....2..2..0..0..0..0....0..0..0..0..1..1
..1..1..1..2..2..2....2..2..1..1..1..1....2..2..2..0..0..0....0..0..1..1..0..0
..1..1..2..2..2..2....2..2..2..2..2..2....2..2..2..0..0..0....1..1..1..1..0..0
..1..1..2..2..2..2....2..2..2..2..2..2....2..2..2..0..0..0....1..1..1..1..0..0
		

Formula

Empirical recurrence of order 96 (see link above)

A231224 Number of (n+2)X(5+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

11, 45, 185, 812, 4298, 19935, 102113, 524113, 2687777, 14197596, 74308295, 393206009, 2088107591, 11086538469, 59103852278, 315153667732, 1682280633028, 8989204931719, 48042619335921, 256910321615776, 1374182610970469
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 5 of A231227

Examples

			Some solutions for n=5
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
..0..0..0..1..1..1..1....0..0..0..1..1..1..1....1..1..0..0..1..1..1
..2..2..0..0..1..1..1....0..0..0..1..1..1..1....1..1..1..1..1..1..1
..2..2..2..0..0..0..0....0..0..1..1..1..1..1....1..1..1..0..0..0..0
..2..2..2..2..0..0..0....1..1..1..1..1..1..1....1..1..0..0..0..0..0
..2..2..2..2..0..0..0....1..1..1..1..1..1..1....1..1..0..0..0..0..0
		

A231225 Number of (n+2)X(6+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

22, 103, 552, 2962, 19935, 117178, 748665, 4870988, 31483476, 210326324, 1392987995, 9318227740, 62685201542, 421269716690, 2844334077278, 19215230536497, 129923432463015, 879756395566799, 5958107153462019
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 6 of A231227

Examples

			Some solutions for n=4
..0..0..0..0..1..1..1..1....0..0..1..1..2..2..1..1....0..0..1..1..1..1..1..1
..0..0..0..0..1..1..1..1....0..0..1..1..2..2..1..1....0..0..1..1..1..1..1..1
..1..1..1..0..0..1..1..1....0..0..0..1..1..2..2..1....0..0..0..1..1..1..1..1
..1..1..1..1..0..0..1..1....0..0..0..1..1..2..2..1....0..0..0..2..2..1..1..1
..1..1..1..1..0..0..0..0....0..0..1..1..2..2..1..1....0..0..2..2..2..2..1..1
..1..1..1..1..0..0..0..0....0..0..1..1..2..2..1..1....0..0..2..2..2..2..1..1
		

A231226 Number of (n+2)X(7+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

43, 264, 1799, 12179, 102113, 748665, 5930126, 48317804, 390225796, 3267809753, 27184285056, 228686827731, 1938757497433, 16432432134267, 140079591842774, 1195812427594821, 10221439423090293, 87552309666153978, 750295493573918472
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Column 7 of A231227

Examples

			Some solutions for n=3
..0..0..1..1..1..1..1..0..0....0..0..0..0..0..0..1..1..1
..0..0..1..1..1..1..1..0..0....0..0..0..0..0..0..1..1..1
..0..0..1..1..1..1..1..0..0....2..2..0..0..0..0..1..1..1
..1..1..0..0..1..1..0..0..0....2..2..2..0..0..0..1..1..1
..1..1..0..0..0..0..0..0..0....2..2..2..0..0..0..1..1..1
		

A231220 Number of (n+2)X(n+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

1, 4, 21, 182, 4298, 117178, 5930126, 495739986
Offset: 1

Views

Author

R. H. Hardin, Nov 05 2013

Keywords

Comments

Diagonal of A231227

Examples

			Some solutions for n=4
..0..0..0..0..0..0....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1
..0..0..1..1..0..0....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1
..1..1..1..1..1..1....1..1..1..0..0..0....0..0..0..0..1..1....0..0..1..1..1..1
..1..1..1..1..1..1....1..1..1..0..0..0....0..0..0..0..1..1....1..1..1..1..1..1
..2..2..2..2..2..2....0..0..0..1..1..1....0..0..0..0..1..1....1..1..1..1..1..1
..2..2..2..2..2..2....0..0..0..1..1..1....0..0..0..0..1..1....1..1..1..1..1..1
		
Showing 1-7 of 7 results.