This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231234 #12 Sep 07 2014 08:17:18 %S A231234 1,1,1,8,4,128,128,1024,256,32768,32768,262144,131072,4194304,4194304, %T A231234 33554432,4194304,2147483648,2147483648,17179869184,8589934592, %U A231234 274877906944,274877906944,2199023255552,549755813888,70368744177664 %N A231234 Denominators related to A206771 and Lorentz gamma factor. %C A231234 See A206771. %C A231234 In addition, it can be noticed that a(n) is always a power of 2 and that a(2n-1)/a(2n) is A006519(n). %F A231234 a(n) = denominator(4^(1-n)*binomial(2*n-2, n-1))/2^valuation(n, 2) (where valuation(n,2) = A007814(n)). %F A231234 a(n) = 2^(2*n-2-adic valuation(n, 2)-valuation(binomial(2*n-2, n-1), 2)). %F A231234 a(n) = A046161(n-1)/A006519(n). %t A231234 max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2 n, n]/4^n, {n, 0, max}] // Denominator; a[0] = 1; a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Denominator; Table[a[n], {n, 0, max}] %t A231234 (* or, directly: *) a[0] = 1; a[n_] := Denominator[4^(1-n)*Binomial[2*n-2, n-1]]/2^IntegerExponent[n, 2]; Table[a[n], {n, 0, max}] %Y A231234 Cf. A001803, A001790, A006519, A046161, A206771. %K A231234 nonn,frac %O A231234 0,4 %A A231234 _Jean-François Alcover_ and _Paul Curtz_, Nov 06 2013