cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A231257 Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

3, 15, 89, 547, 3381, 20911, 129329, 799835, 4946509, 30591143, 189187465, 1170008467, 7235785189, 44748896799, 276744502881, 1711495152971, 10584548667901, 65458946997783, 404823472069561, 2503585087356803
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 2 of A231263.

Examples

			Some solutions for n=3:
..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..1....0..0..0
..0..0..1....0..1..2....0..1..2....0..0..0....0..1..2....0..1..0....1..1..1
..0..1..1....1..2..0....1..2..2....0..0..0....1..2..1....1..0..0....0..0..2
..1..1..1....2..0..0....2..2..2....0..0..0....2..1..1....0..0..0....0..2..2
		

Formula

Empirical: a(n) = 10*a(n-1) -29*a(n-2) +36*a(n-3) -16*a(n-4).
Empirical g.f.: x*(1 - 2*x)*(3 - 9*x + 8*x^2) / ((1 - x)*(1 - 9*x + 20*x^2 - 16*x^3)). - Colin Barker, Feb 16 2018

A231258 Number of (n+1) X (3+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

4, 32, 304, 2982, 29366, 289230, 2848550, 28054534, 276301638, 2721223974, 26800640678, 263952669990, 2599602461350, 25602820961958, 252155647340198, 2483416596612262, 24458536057349286, 240885877498412198
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 3 of A231263.

Examples

			Some solutions for n=3:
..0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..0..0....0..1..1..2....0..1..0..0....1..1..1..1....0..0..1..1
..1..1..0..0....0..0..2..2....1..0..0..2....0..0..1..1....1..1..1..2
..1..0..0..0....0..0..0..0....0..0..2..2....0..1..1..1....2..2..2..2
		

Formula

Empirical: a(n) = 17*a(n-1) -96*a(n-2) +308*a(n-3) -628*a(n-4) +800*a(n-5) -656*a(n-6) +256*a(n-7).
Empirical g.f.: 2*x*(2 - 18*x + 72*x^2 - 173*x^3 + 256*x^4 - 228*x^5 + 128*x^6) / ((1 - x)*(1 - 16*x + 80*x^2 - 228*x^3 + 400*x^4 - 400*x^5 + 256*x^6)). - Colin Barker, Feb 16 2018

A231259 Number of (n+1)X(4+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

7, 83, 1253, 19503, 302121, 4670875, 72212345, 1116538567, 17264116873, 266940042371, 4127456101305, 63819175744751, 986779131942921, 15257688013347083, 235916058283574201, 3647760162012484183
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 4 of A231263

Examples

			Some solutions for n=3
..0..0..0..1..1....0..0..0..0..0....0..0..1..1..1....0..0..1..1..1
..0..0..1..2..2....0..0..0..1..1....0..1..0..0..0....0..1..0..0..2
..1..1..2..1..1....1..1..1..2..2....1..0..2..2..2....1..0..0..2..0
..2..2..1..1..1....2..2..2..2..2....0..2..2..2..2....2..2..2..0..0
		

Formula

Empirical: a(n) = 31*a(n-1) -364*a(n-2) +2570*a(n-3) -12609*a(n-4) +44731*a(n-5) -117554*a(n-6) +227260*a(n-7) -319008*a(n-8) +314816*a(n-9) -208992*a(n-10) +83456*a(n-11) -14336*a(n-12)

A231260 Number of (n+1)X(5+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

12, 211, 5109, 126851, 3130708, 77333664, 1911322499, 47238533054, 1167469879103, 28853204049176, 713087755664766, 17623492910180119, 435552963190637813, 10764403103144565858, 266035096373745526067
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 5 of A231263

Examples

			Some solutions for n=3
..0..0..0..0..1..1....0..0..1..1..0..0....0..0..0..0..0..0....0..0..0..1..1..1
..0..0..0..1..1..2....0..1..1..0..0..0....0..1..1..0..0..1....0..0..1..1..1..2
..1..1..1..1..2..2....1..0..0..1..1..2....1..1..0..0..1..1....2..2..1..1..2..2
..1..1..1..1..1..1....0..0..1..1..2..2....2..2..2..2..2..2....2..1..1..1..1..1
		

Formula

Empirical: a(n) = 69*a(n-1) -2078*a(n-2) +38960*a(n-3) -525899*a(n-4) +5498915*a(n-5) -46432883*a(n-6) +324971505*a(n-7) -1918092860*a(n-8) +9666311433*a(n-9) -41987092645*a(n-10) +158405641708*a(n-11) -522483149728*a(n-12) +1515303637316*a(n-13) -3883210245412*a(n-14) +8829280197296*a(n-15) -17868610021296*a(n-16) +32259257306496*a(n-17) -52016416190400*a(n-18) +74922164013056*a(n-19) -96301233124608*a(n-20) +110211044965376*a(n-21) -111885000085504*a(n-22) +100202065260544*a(n-23) -78553659015168*a(n-24) +53334115090432*a(n-25) -30908302295040*a(n-26) +14987112742912*a(n-27) -5912828837888*a(n-28) +1821821108224*a(n-29) -410773356544*a(n-30) +60196651008*a(n-31) -4294967296*a(n-32)

A231261 Number of (n+1)X(6+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

23, 557, 21894, 866396, 34170727, 1350570015, 53369789699, 2108712981800, 83318930054700, 3292096503338981, 130077252787397712, 5139609041198810834, 203076105223297844491, 8023938109223922493851, 317041646252827399145319
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 6 of A231263

Examples

			Some solutions for n=3
..0..0..1..1..1..1..1....0..0..0..0..0..0..0....0..0..0..0..0..1..1
..0..1..1..1..1..1..1....1..1..1..1..1..0..1....0..2..2..0..1..1..0
..1..1..2..2..2..1..1....1..1..1..1..0..1..1....2..2..0..2..2..0..0
..2..2..2..2..2..2..2....1..1..1..0..0..0..0....0..0..2..2..2..2..2
		

Formula

Empirical recurrence of order 67 (see link above)

A231262 Number of (n+1)X(7+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

44, 1471, 94234, 5921588, 373664749, 23652344858, 1496478177166, 94693898367381, 5992336358720087, 379199481911896240, 23995972977026962928, 1518480393702303769523, 96090421103022757089502
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Column 7 of A231263

Examples

			Some solutions for n=3
..0..0..0..1..1..1..0..0....0..0..0..1..1..1..1..0....0..0..1..1..0..0..0..0
..0..0..1..1..1..0..0..2....0..0..1..1..1..1..0..0....0..1..1..0..0..1..1..2
..1..1..1..1..2..2..2..1....0..1..2..2..2..2..0..0....1..1..2..2..1..1..2..2
..1..1..1..2..2..2..1..1....1..2..2..2..2..2..2..2....2..2..2..1..1..2..2..2
		

A231264 Number of (2+1) X (n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 15, 32, 83, 211, 557, 1471, 3909, 10387, 27617, 73419, 195197, 518979, 1379897, 3669051, 9755861, 25940515, 68974961, 183402043, 487659661, 1296670403, 3447803113, 9167594299, 24376331077, 64815862051, 172343243361, 458255009275
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Row 2 of A231263.

Examples

			Some solutions for n=3:
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..1..1....1..1..2..2....0..0..0..0....1..1..1..0
..1..1..1..1....0..1..1..1....1..2..2..2....1..1..1..1....1..1..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) -2*a(n-2) -8*a(n-3) +11*a(n-4) -4*a(n-6) -4*a(n-7) -4*a(n-8) +8*a(n-9).
Empirical g.f.: x*(6 - 9*x - 16*x^2 + 33*x^3 - 3*x^4 - 30*x^5 + x^6 - 2*x^7 + 40*x^8) / ((1 - x)*(1 + x)*(1 - 2*x + 2*x^2)*(1 - 2*x^2)*(1 - 2*x - x^2 - 2*x^3)). - Colin Barker, Feb 16 2018

A231265 Number of (3+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

22, 89, 304, 1253, 5109, 21894, 94234, 411978, 1804685, 7941968, 34969518, 154177482, 679856170, 2999022193, 13230140405, 58371368067, 257539346061, 1136325839478, 5013778949950, 22122400344087, 97611358054570
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Row 3 of A231263

Examples

			Some solutions for n=3
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1
..1..1..1..1....1..1..0..0....0..0..0..0....0..1..1..1....0..1..0..0
..2..2..2..2....1..0..0..0....0..0..0..1....1..2..2..2....1..0..0..2
..2..2..2..2....2..2..2..2....0..0..1..1....2..2..2..2....2..2..2..2
		

Formula

Empirical: a(n) = 9*a(n-1) -20*a(n-2) -36*a(n-3) +220*a(n-4) -282*a(n-5) -226*a(n-6) +1107*a(n-7) -1331*a(n-8) +254*a(n-9) +1022*a(n-10) -257*a(n-11) -2156*a(n-12) +2602*a(n-13) +2385*a(n-14) -8433*a(n-15) +7492*a(n-16) -959*a(n-17) -1626*a(n-18) -531*a(n-19) -3536*a(n-20) +3860*a(n-21) -2019*a(n-22) +4258*a(n-23) -1660*a(n-24) +328*a(n-25) -368*a(n-26) -96*a(n-27) for n>28

A231266 Number of (4+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

86, 547, 2982, 19503, 126851, 866396, 5921588, 40973953, 283765581, 1972122444, 13710377266, 95395947525, 663770545015, 4619277813951, 32145505935933, 223706188296535, 1556796061665136, 10833978133171498, 75395132198062729
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Row 4 of A231263

Examples

			Some solutions for n=3
..0..0..0..0....0..0..0..0....0..0..1..1....0..0..0..0....0..0..1..1
..0..0..1..1....1..1..0..0....0..1..1..1....0..0..0..0....0..1..1..2
..1..1..2..2....1..2..2..2....1..1..1..1....0..0..0..1....1..1..2..2
..1..2..1..1....2..1..1..0....1..1..2..2....0..0..1..1....1..2..0..0
..2..1..1..1....1..1..0..0....1..2..2..2....0..0..0..0....2..0..0..0
		

A231267 Number of (5+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

342, 3381, 29366, 302121, 3130708, 34170727, 373664749, 4147016414, 46117392977, 515063996641, 5757867388323, 64448318261860, 721609183551621, 8082185902161731, 90528853400096455, 1014081345152953804
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Row 5 of A231263

Examples

			Some solutions for n=3
..0..0..0..1....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..0....0..0..0..1....0..1..1..1....0..0..0..1....1..1..2..2
..0..1..0..0....0..0..1..2....2..2..1..1....0..1..1..1....1..2..2..0
..1..1..2..2....1..1..2..2....2..1..1..1....1..1..0..0....0..0..0..1
..1..2..2..0....2..2..2..2....1..0..0..0....0..0..0..1....1..1..1..2
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1....1..1..2..2
		
Showing 1-10 of 13 results. Next