A231265 Number of (3+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
22, 89, 304, 1253, 5109, 21894, 94234, 411978, 1804685, 7941968, 34969518, 154177482, 679856170, 2999022193, 13230140405, 58371368067, 257539346061, 1136325839478, 5013778949950, 22122400344087, 97611358054570
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1 ..1..1..1..1....1..1..0..0....0..0..0..0....0..1..1..1....0..1..0..0 ..2..2..2..2....1..0..0..0....0..0..0..1....1..2..2..2....1..0..0..2 ..2..2..2..2....2..2..2..2....0..0..1..1....2..2..2..2....2..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 9*a(n-1) -20*a(n-2) -36*a(n-3) +220*a(n-4) -282*a(n-5) -226*a(n-6) +1107*a(n-7) -1331*a(n-8) +254*a(n-9) +1022*a(n-10) -257*a(n-11) -2156*a(n-12) +2602*a(n-13) +2385*a(n-14) -8433*a(n-15) +7492*a(n-16) -959*a(n-17) -1626*a(n-18) -531*a(n-19) -3536*a(n-20) +3860*a(n-21) -2019*a(n-22) +4258*a(n-23) -1660*a(n-24) +328*a(n-25) -368*a(n-26) -96*a(n-27) for n>28
Comments