This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231308 #36 Nov 21 2019 00:10:44 %S A231308 0,1,512,19684,262656,1972809,10340352,42326416,144558080,429746905, %T A231308 1144558080,2787694596,6304338432,13392193969,26965385216,51835553344, %U A231308 95684861952,170423429841,294044152320,493111127620,806044152320,1287391174201,2013313370112 %N A231308 Recurrence a(n) = a(n-2) + n^M for M=9, starting with a(0)=0, a(1)=1. %H A231308 Stanislav Sykora, <a href="/A231308/b231308.txt">Table of n, a(n) for n = 0..9999</a> %H A231308 Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019. %H A231308 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (10,-44,110,-165,132,0,-132,165,-110,44,-10,1). %F A231308 a(n) = Sum{k=0..floor(n/2)}(n-2k)^9. %F A231308 a(0)=0, a(1)=1, a(2)=512, a(3)=19684, a(4)=262656, a(5)=1972809, a(6)=10340352, a(7)=42326416, a(8)=144558080, a(9)=429746905, a(10)=1144558080, a(11)=2787694596, a(n) = 10*a(n-1) - 44*a(n-2) + 110*a(n-3) - 165*a(n-4) + 132*a(n-5) - 132*a(n-7) + 165*a(n-8) - 110*a(n-9) + 44*a(n-10) - 10*a(n-11) + a(n-12). - _Harvey P. Dale_, Apr 29 2014 %F A231308 From _Colin Barker_, Dec 22 2015: (Start) %F A231308 a(n) = (1/40)*(2*n^10 + 20*n^9 + 60*n^8 - 224*n^6 + 640*n^4 - 768*n^2 - 155*((-1)^n -1)). %F A231308 G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8) / ((1-x)^11*(1+x)). (End) %e A231308 a(5) = 5^9 + 3^9 + 1^9 = 1972809. %t A231308 RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+n^9},a,{n,30}] (* or *) %t A231308 LinearRecurrence[{10,-44,110,-165,132,0,-132,165,-110,44,-10,1},{0,1,512,19684,262656,1972809,10340352,42326416,144558080,429746905,1144558080,2787694596},30] (* _Harvey P. Dale_, Apr 29 2014 *) %o A231308 (PARI) nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^9); print(a); %o A231308 (PARI) concat(0, Vec(x*(1 +502*x +14608*x^2 +88234*x^3 +156190*x^4 +88234*x^5 +14608*x^6 +502*x^7 +x^8) / ((1 -x)^11*(1 +x)) + O(x^40))) \\ _Colin Barker_, Dec 22 2015 %Y A231308 Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231309 (M=10). %K A231308 nonn,easy %O A231308 0,3 %A A231308 _Stanislav Sykora_, Nov 07 2013 %E A231308 PARI code corrected by _Colin Barker_, Dec 22 2015