A231317 Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
6, 24, 216, 1536, 11616, 86400, 645504, 4816896, 35956224, 268376064, 2003195904, 14952038400, 111603572736, 833020329984, 6217748545536, 46409906651136, 346408259813376, 2585626450329600, 19299378566529024, 144052522724622336
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..1....0..1....0..0....0..1....0..1....0..0....0..1....0..1....0..0 ..1..1....2..2....0..2....1..1....2..2....2..2....1..2....0..2....2..1....1..2 ..2..1....1..2....0..0....0..0....0..2....0..1....0..1....1..2....2..1....0..1 ..2..2....1..0....1..1....1..0....0..1....2..0....0..1....2..1....1..2....0..2 ..1..0....1..2....2..0....1..2....0..2....1..1....0..1....0..0....1..0....1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231324.
Formula
Empirical: a(n) = 6*a(n-1) + 12*a(n-2) - 8*a(n-3).
Conjectures from Colin Barker, Mar 18 2018: (Start)
G.f.: 6*x*(1 - 2*x) / ((1 + 2*x)*(1 - 8*x + 4*x^2)).
a(n) = ((-2)^(1+n) + (4-2*sqrt(3))^n + (2*(2+sqrt(3)))^n) / 2.
(End)
Comments