A231318 Number of (n+1) X (2+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
24, 432, 9600, 192192, 3917184, 79306752, 1607468544, 32569451520, 659942375424, 13371898245120, 270945239064576, 5489964932136960, 111239155883802624, 2253957795356147712, 45670301427851329536, 925383976903713226752
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0....0..0..1....0..0..0....0..1..0....0..1..0....0..0..0....0..0..0 ..0..1..2....0..2..1....1..2..1....0..1..1....2..2..0....1..2..0....1..1..1 ..0..0..0....2..1..1....2..0..0....1..2..0....1..0..2....2..1..2....2..2..2 ..1..0..0....2..0..0....2..1..1....2..0..2....1..1..2....2..0..0....0..2..0 ..2..2..1....2..0..1....2..2..2....2..1..2....2..2..0....2..2..2....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231324.
Formula
Empirical: a(n) = 22*a(n-1) -776*a(n-3) +944*a(n-4) +7168*a(n-5) -12416*a(n-6) +9216*a(n-8) -4096*a(n-9).
Comments