This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231324 #6 Jul 23 2025 06:24:47 %S A231324 6,24,24,216,432,216,1536,9600,9600,1536,11616,192192,569184,192192, %T A231324 11616,86400,3917184,30645600,30645600,3917184,86400,645504,79306752, %U A231324 1695860064,4509951264,1695860064,79306752,645504,4816896,1607468544 %N A231324 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order. %C A231324 Table starts %C A231324 .....6......24........216.........1536...........11616..............86400 %C A231324 ....24.....432.......9600.......192192.........3917184...........79306752 %C A231324 ...216....9600.....569184.....30645600......1695860064........93216760416 %C A231324 ..1536..192192...30645600...4509951264....677392128096....101255199764448 %C A231324 .11616.3917184.1695860064.677392128096.277024322215296.112717970818679904 %H A231324 R. H. Hardin, <a href="/A231324/b231324.txt">Table of n, a(n) for n = 1..180</a> %F A231324 Empirical for column k: %F A231324 k=1: a(n) = 6*a(n-1) +12*a(n-2) -8*a(n-3) %F A231324 k=2: [order 9] %F A231324 k=3: [order 36] %F A231324 k=4: [order 81] %e A231324 Some solutions for n=2 k=4 %e A231324 ..0..0..0..1..0....0..1..2..0..2....0..1..0..0..0....0..1..0..1..1 %e A231324 ..2..1..0..2..2....0..1..1..0..2....0..2..2..2..1....2..1..1..2..0 %e A231324 ..2..2..0..2..0....0..2..0..1..2....1..0..0..0..1....0..2..1..0..0 %K A231324 nonn,tabl %O A231324 1,1 %A A231324 _R. H. Hardin_, Nov 07 2013