cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A231317 Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 24, 216, 1536, 11616, 86400, 645504, 4816896, 35956224, 268376064, 2003195904, 14952038400, 111603572736, 833020329984, 6217748545536, 46409906651136, 346408259813376, 2585626450329600, 19299378566529024, 144052522724622336
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 1 of A231324.

Examples

			Some solutions for n=4:
..0..0....0..1....0..1....0..0....0..1....0..1....0..0....0..1....0..1....0..0
..1..1....2..2....0..2....1..1....2..2....2..2....1..2....0..2....2..1....1..2
..2..1....1..2....0..0....0..0....0..2....0..1....0..1....1..2....2..1....0..1
..2..2....1..0....1..1....1..0....0..1....2..0....0..1....2..1....1..2....0..2
..1..0....1..2....2..0....1..2....0..2....1..1....0..1....0..0....1..0....1..2
		

Crossrefs

Cf. A231324.

Formula

Empirical: a(n) = 6*a(n-1) + 12*a(n-2) - 8*a(n-3).
Conjectures from Colin Barker, Mar 18 2018: (Start)
G.f.: 6*x*(1 - 2*x) / ((1 + 2*x)*(1 - 8*x + 4*x^2)).
a(n) = ((-2)^(1+n) + (4-2*sqrt(3))^n + (2*(2+sqrt(3)))^n) / 2.
(End)

A231318 Number of (n+1) X (2+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

24, 432, 9600, 192192, 3917184, 79306752, 1607468544, 32569451520, 659942375424, 13371898245120, 270945239064576, 5489964932136960, 111239155883802624, 2253957795356147712, 45670301427851329536, 925383976903713226752
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 2 of A231324.

Examples

			Some solutions for n=4
..0..1..0....0..0..1....0..0..0....0..1..0....0..1..0....0..0..0....0..0..0
..0..1..2....0..2..1....1..2..1....0..1..1....2..2..0....1..2..0....1..1..1
..0..0..0....2..1..1....2..0..0....1..2..0....1..0..2....2..1..2....2..2..2
..1..0..0....2..0..0....2..1..1....2..0..2....1..1..2....2..0..0....0..2..0
..2..2..1....2..0..1....2..2..2....2..1..2....2..2..0....2..2..2....1..1..0
		

Crossrefs

Cf. A231324.

Formula

Empirical: a(n) = 22*a(n-1) -776*a(n-3) +944*a(n-4) +7168*a(n-5) -12416*a(n-6) +9216*a(n-8) -4096*a(n-9).

A231319 Number of (n+1)X(3+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

216, 9600, 569184, 30645600, 1695860064, 93216760416, 5132640060000, 282526545904224, 15552808745472864, 856159949131740000, 47130503963700361056, 2594473391280336234336, 142822425161120289404256
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 3 of A231324

Examples

			Some solutions for n=2
..0..1..0..2....0..1..2..1....0..0..0..0....0..0..1..2....0..0..0..1
..1..1..0..0....2..2..2..1....1..1..1..2....2..2..0..1....1..1..2..2
..0..0..2..1....0..1..2..0....2..2..0..0....1..0..0..2....0..1..2..1
		

Formula

Empirical: a(n) = 57*a(n-1) +194*a(n-2) -16272*a(n-3) -50654*a(n-4) +1754012*a(n-5) +5241944*a(n-6) -96475568*a(n-7) -98407584*a(n-8) +2319538080*a(n-9) +20230624*a(n-10) -29255162752*a(n-11) +17323897856*a(n-12) +225620671744*a(n-13) -258160872704*a(n-14) -1110522717184*a(n-15) +2032863418368*a(n-16) +3190512078848*a(n-17) -9576311832576*a(n-18) -4024700600320*a(n-19) +29553678188544*a(n-20) -5539096297472*a(n-21) -61959824474112*a(n-22) +34977239007232*a(n-23) +85185755348992*a(n-24) -68609208483840*a(n-25) -75467489017856*a(n-26) +75009850605568*a(n-27) +41280625180672*a(n-28) -51374922399744*a(n-29) -11009074921472*a(n-30) +21444771708928*a(n-31) -498216206336*a(n-32) -4492535791616*a(n-33) +747324309504*a(n-34) +309237645312*a(n-35) -68719476736*a(n-36)

A231320 Number of (n+1)X(4+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

1536, 192192, 30645600, 4509951264, 677392128096, 101255199764448, 15154743446853216, 2267704492520687136, 339353240593608062304, 50782606894918838006496, 7599400278857398619862624
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 4 of A231324

Examples

			Some solutions for n=2
..0..1..2..0..1....0..0..0..1..0....0..1..0..2..0....0..0..0..0..1
..0..1..2..2..0....2..1..0..2..1....0..2..2..1..0....1..2..2..0..0
..2..0..2..2..0....0..2..1..2..0....1..1..2..0..0....1..0..0..1..2
		

Formula

Empirical recurrence of order 81 (see link above)

A231321 Number of (n+1)X(5+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

11616, 3917184, 1695860064, 677392128096, 277024322215296, 112717970818679904, 45929855692690790400, 18711513985409981683296, 7623482985272651235333504, 3105964603406107757886555744
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 5 of A231324

Examples

			Some solutions for n=1
..0..0..0..0..1..2....0..1..2..0..2..2....0..0..1..1..1..0....0..1..2..0..2..2
..1..2..2..2..1..2....2..2..1..1..0..0....2..2..0..2..2..0....2..2..2..0..1..1
		

A231322 Number of (n+1)X(6+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

86400, 79306752, 93216760416, 101255199764448, 112717970818679904, 124848872383160454816, 138493610465688295961184, 153600875343463960773850752, 170368502364235084980055819776
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 6 of A231324

Examples

			Some solutions for n=1
..0..1..2..2..0..1..0....0..1..2..2..0..2..2....0..0..0..1..0..0..2
..0..2..0..0..2..1..0....0..2..0..1..1..1..1....2..2..2..2..1..0..2
		

A231323 Number of (n+1) X (7+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

645504, 1607468544, 5132640060000, 15154743446853216, 45929855692690790400, 138493610465688295961184, 418284029768568825937161600, 1263090712888488868089057630816, 3814456862436895259545489736740704
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Column 7 of A231324.

Examples

			Some solutions for n=1
..0..1..2..1..0..2..0..0....0..0..0..1..0..0..1..1....0..0..1..0..0..2..0..2
..2..2..0..0..1..2..2..1....1..1..0..1..2..0..2..0....2..2..2..2..0..1..1..1
		

Crossrefs

Cf. A231324.

A231316 Number of (n+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

6, 432, 569184, 4509951264, 277024322215296, 124848872383160454816, 418284029768568825937161600, 10384840669528137933211181787934080, 1911676181020982254709223663612649499528544
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2013

Keywords

Comments

Diagonal of A231324

Examples

			Some solutions for n=2
..0..1..1....0..0..1....0..1..1....0..1..1....0..1..1....0..1..2....0..1..0
..0..2..0....2..2..0....2..2..1....1..2..2....2..2..1....2..1..2....0..2..1
..0..2..0....0..2..0....0..0..1....0..2..0....1..2..0....0..0..2....1..0..1
		
Showing 1-8 of 8 results.