cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231326 Primes p such that p - 2*k is also prime, where p is k-th prime.

This page as a plain text file.
%I A231326 #6 Nov 07 2013 11:31:40
%S A231326 17,19,23,37,47,67,71,73,83,89,97,113,131,137,139,149,151,157,167,179,
%T A231326 181,197,199,223,233,263,307,331,353,379,397,419,421,439,443,457,461,
%U A231326 463,503,557,587,613,631,641,643,659,661,677,701,719,743,761,773,839,863
%N A231326 Primes p such that p - 2*k is also prime, where p is k-th prime.
%H A231326 K. D. Bajpai, <a href="/A231326/b231326.txt">Table of n, a(n) for n = 1..5200</a>
%e A231326 a(2)= 19 which is 8th prime. prime(8)-2*8= 19-16= 3 which is also prime.
%e A231326 a(6)= 67 which is 19th prime. prime(19)-2*19= 67-38= 29 which is also prime.
%p A231326 KD := proc() local a,b; a:= ithprime(n); b := a-2*n; if isprime(b) then RETURN (a); fi;end: seq(KD(),n=1..500);
%t A231326 TK = Select[Table[{Prime[n], Prime[n] - 2*n}, {n, 200}], PrimeQ[#[[2]]] &]; Transpose[TK][[1]]
%Y A231326 Cf. A061068 (primes: prime(m) plus its subscript).
%Y A231326 Cf. A064402 (numbers n: prime(n)+n is prime).
%Y A231326 Cf. A227420 (primes: p - pi(p) is also prime).
%Y A231326 Cf. A231232 (primes: prime(k)+2*k is also prime).
%K A231326 nonn
%O A231326 1,1
%A A231326 _K. D. Bajpai_, Nov 07 2013