This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231366 #16 Jan 19 2025 09:26:29 %S A231366 2,0,1,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0, %T A231366 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A231366 0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1 %N A231366 Number of numbers whose sum of non-divisors (A024816) is equal to n. %C A231366 a(n) = frequency of values n in A024816(m), where A024816(m) = sum of non-divisors of m = antisigma(m). %C A231366 From _Charles R Greathouse IV_, Nov 11 2013: (Start) %C A231366 So far all n such that a(n) > 1 correspond to members of A067816: %C A231366 a(0) = 2 from 1, 2; %C A231366 a(9) = 2 from 5, 6; %C A231366 a(36844389) = 2 from 8585, 8586; %C A231366 a(129894940) = 2 from 16119, 16120; %C A231366 a(446591224981504) = 2 from 29886159, 29886160. %C A231366 I checked this, and thus Krizek's conjecture below, up to 4*10^19. %C A231366 (End) %H A231366 Antti Karttunen, <a href="/A231366/b231366.txt">Table of n, a(n) for n = 0..32001</a> %F A231366 Conjecture: max a(n) = 2. %F A231366 a(A231368(n)) >= 1, a(A231369(n)) = 0. %F A231366 a(n) = 0 for such n that A231367(n) = 0, a(n) = 0 if A024816(m) = n has no solution. %F A231366 a(n) >= 1 for such n that A231367(n) = 1, a(n) >= 1 if A024816(m) = n for any m. %F A231366 Conjecture: a(n) = 2 iff n is number from A225775 (0, 9, 36844389, 129894940, 446591224981504, …) %e A231366 a(9) = 2 because there are two numbers m (5, 6) with antisigma(m) = 9. %o A231366 (PARI) %o A231366 up_to = 105; %o A231366 A024816(n) = (n*(n+1)/2-sigma(n)); %o A231366 A231366list(up_to) = { my(v=vector(1+up_to), u); for(n=1, 2+up_to, if((u = A024816(n))<=up_to, v[1+u]++)); (v); }; %o A231366 v231366 = A231366list(up_to); %o A231366 A231366(n) = v231366[1+n]; \\ _Antti Karttunen_, Jan 19 2025 %Y A231366 Cf. A054973 (number of numbers whose divisors sum to n), A231365, A231368, A231367, A231369, A067816. %K A231366 nonn %O A231366 0,1 %A A231366 _Jaroslav Krizek_, Nov 09 2013 %E A231366 Data section extended to a(105) by _Antti Karttunen_, Jan 19 2025