A231377 Number of n X 3 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.
4, 21, 93, 378, 1519, 6126, 24747, 99964, 403743, 1630662, 6586087, 26600572, 107437031, 433927396, 1752589551, 7078534592, 28589495207, 115470119764, 466372299261, 1883631211124, 7607798625811, 30727139997676, 124103854340837
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....1..0..0....0..0..0....0..0..1....1..1..0....0..1..0....0..1..1 ..1..0..1....0..0..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1 ..1..0..0....0..0..1....0..0..1....0..0..0....0..0..0....0..1..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A231382.
Formula
Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 16*a(n-3) - 14*a(n-4) - 3*a(n-5) + 8*a(n-6) - 9*a(n-7) - 2*a(n-8) + 6*a(n-9) + 2*a(n-10) for n>11.
Empirical g.f.: x*(4 - 3*x + 11*x^2 - 13*x^3 - 6*x^4 - 12*x^5 - 15*x^6 + 3*x^7 + 13*x^8 + 8*x^9 + 2*x^10) / (1 - 6*x + 11*x^2 - 16*x^3 + 14*x^4 + 3*x^5 - 8*x^6 + 9*x^7 + 2*x^8 - 6*x^9 - 2*x^10). - Colin Barker, Sep 28 2018