cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231377 Number of n X 3 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

4, 21, 93, 378, 1519, 6126, 24747, 99964, 403743, 1630662, 6586087, 26600572, 107437031, 433927396, 1752589551, 7078534592, 28589495207, 115470119764, 466372299261, 1883631211124, 7607798625811, 30727139997676, 124103854340837
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..1....1..1..0....0..1..0....0..1..1
..1..0..1....0..0..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1
..1..0..0....0..0..1....0..0..1....0..0..0....0..0..0....0..1..0....0..0..0
		

Crossrefs

Column 3 of A231382.

Formula

Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 16*a(n-3) - 14*a(n-4) - 3*a(n-5) + 8*a(n-6) - 9*a(n-7) - 2*a(n-8) + 6*a(n-9) + 2*a(n-10) for n>11.
Empirical g.f.: x*(4 - 3*x + 11*x^2 - 13*x^3 - 6*x^4 - 12*x^5 - 15*x^6 + 3*x^7 + 13*x^8 + 8*x^9 + 2*x^10) / (1 - 6*x + 11*x^2 - 16*x^3 + 14*x^4 + 3*x^5 - 8*x^6 + 9*x^7 + 2*x^8 - 6*x^9 - 2*x^10). - Colin Barker, Sep 28 2018