cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231376 Number of n X 2 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

2, 10, 21, 48, 113, 261, 601, 1390, 3216, 7435, 17190, 39751, 91921, 212555, 491510, 1136570, 2628207, 6077470, 14053561, 32497507, 75147355, 173771026, 401828790, 929190453, 2148663614, 4968578109, 11489359399, 26568039511, 61436038272
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 2 of A231382.

Examples

			Some solutions for n=3:
..1..0....0..1....0..0....1..0....0..0....1..0....0..0....0..1....0..0....0..0
..1..0....0..0....1..1....0..0....0..0....1..0....0..1....0..1....0..0....1..1
..0..0....0..0....1..1....0..0....0..0....1..0....0..1....0..1....1..1....0..0
		

Crossrefs

Cf. A231382.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) - a(n-5) for n>6.
Empirical g.f.: x*(2 + 4*x - 5*x^2 + x^3 - 5*x^4 - 2*x^5) / (1 - 3*x + 2*x^2 - 2*x^3 + 2*x^4 + x^5). - Colin Barker, Mar 18 2018

A231377 Number of n X 3 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

4, 21, 93, 378, 1519, 6126, 24747, 99964, 403743, 1630662, 6586087, 26600572, 107437031, 433927396, 1752589551, 7078534592, 28589495207, 115470119764, 466372299261, 1883631211124, 7607798625811, 30727139997676, 124103854340837
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..1....1..1..0....0..1..0....0..1..1
..1..0..1....0..0..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1
..1..0..0....0..0..1....0..0..1....0..0..0....0..0..0....0..1..0....0..0..0
		

Crossrefs

Column 3 of A231382.

Formula

Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 16*a(n-3) - 14*a(n-4) - 3*a(n-5) + 8*a(n-6) - 9*a(n-7) - 2*a(n-8) + 6*a(n-9) + 2*a(n-10) for n>11.
Empirical g.f.: x*(4 - 3*x + 11*x^2 - 13*x^3 - 6*x^4 - 12*x^5 - 15*x^6 + 3*x^7 + 13*x^8 + 8*x^9 + 2*x^10) / (1 - 6*x + 11*x^2 - 16*x^3 + 14*x^4 + 3*x^5 - 8*x^6 + 9*x^7 + 2*x^8 - 6*x^9 - 2*x^10). - Colin Barker, Sep 28 2018

A231378 Number of nX4 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

7, 48, 378, 2539, 17363, 120124, 830890, 5746499, 39745115, 274872588, 1900931060, 13146313579, 90916738809, 628758673194, 4348344850906, 30072109222833, 207971483025113, 1438280832129012, 9946804915649296, 68789714754091787
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 4 of A231382

Examples

			Some solutions for n=3
..0..1..0..0....0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..1
..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..0....1..0..0..1
..0..1..1..1....0..0..0..0....1..1..1..0....0..0..0..1....1..1..0..0
		

Formula

Empirical: a(n) = 10*a(n-1) -31*a(n-2) +82*a(n-3) -131*a(n-4) +226*a(n-5) -319*a(n-6) +206*a(n-7) -574*a(n-8) +483*a(n-9) -432*a(n-10) +517*a(n-11) +132*a(n-12) +746*a(n-13) -145*a(n-14) -228*a(n-15) -6*a(n-16) +41*a(n-17) +3*a(n-18) -3*a(n-19) for n>20

A231379 Number of nX5 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

12, 113, 1519, 17363, 209118, 2547810, 30936914, 375620622, 4560995236, 55375119088, 672313654008, 8162807379715, 99107740379983, 1203301841913136, 14609703508465925, 177381467975127821, 2153649923765174964
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 5 of A231382

Examples

			Some solutions for n=3
..1..1..1..1..1....0..0..0..0..0....0..0..0..0..1....1..0..0..0..0
..0..0..1..1..1....1..0..0..0..0....0..1..0..0..1....1..0..0..1..1
..0..0..0..0..0....0..0..0..1..0....0..0..0..1..1....1..1..1..1..1
		

Formula

Empirical: a(n) = 21*a(n-1) -168*a(n-2) +988*a(n-3) -4019*a(n-4) +14018*a(n-5) -38338*a(n-6) +76250*a(n-7) -75318*a(n-8) -25048*a(n-9) -2704*a(n-10) +284955*a(n-11) -215394*a(n-12) -880505*a(n-13) -242350*a(n-14) +5521214*a(n-15) +653795*a(n-16) -10478457*a(n-17) -9279936*a(n-18) +15930956*a(n-19) +21911876*a(n-20) -8411513*a(n-21) -37124626*a(n-22) -3849041*a(n-23) +23286499*a(n-24) -8400505*a(n-25) -9905859*a(n-26) +47524429*a(n-27) +20129245*a(n-28) -116149038*a(n-29) +2411219*a(n-30) +172063757*a(n-31) -3388918*a(n-32) -136545864*a(n-33) -28219012*a(n-34) +67852922*a(n-35) +54667307*a(n-36) +2102952*a(n-37) -12764701*a(n-38) -5492419*a(n-39) -787424*a(n-40) +318583*a(n-41) +347059*a(n-42) +193761*a(n-43) +39772*a(n-44) -696*a(n-45) -1216*a(n-46) for n>47

A231380 Number of nX6 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

21, 261, 6126, 120124, 2547810, 54485279, 1157805351, 24615811883, 523548909308, 11133382117666, 236751472446562, 5034642562404119, 107064153494511600, 2276766498890520783, 48416455811053263714, 1029597712238409457187
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 6 of A231382

Examples

			Some solutions for n=3
..0..0..0..0..1..0....0..1..0..0..1..0....0..1..1..1..0..0....0..0..1..0..0..0
..1..0..0..0..1..0....0..0..0..0..1..0....0..0..0..0..0..0....1..0..0..0..0..0
..0..0..0..1..1..0....1..0..0..1..1..0....0..1..1..0..0..0....1..1..0..0..1..0
		

A231381 Number of nX7 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

37, 601, 24747, 830890, 30936914, 1157805351, 42978519280, 1597438228604, 59402875813957, 2208383979206654, 82098126041989007, 3052145959217113535, 113469026790211137424, 4218406116270705640956, 156826531286247105951370
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 7 of A231382

Examples

			Some solutions for n=3
..0..1..1..1..0..0..0....1..1..0..0..0..1..1....1..0..0..1..1..0..0
..0..1..0..0..0..1..0....1..0..0..0..0..1..1....1..0..0..1..0..0..0
..0..0..0..1..1..1..0....0..0..1..1..1..1..1....0..0..1..1..0..0..1
		

A231375 Number of n X n 0..1 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

2, 10, 93, 2539, 209118, 54485279, 42978519280, 103861521149940, 768825093368064218, 17400837260687664224580, 1205024418040758639132121433, 255358434130512785761464119154485
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Diagonal of A231382

Examples

			Some solutions for n=3
..0..0..1....1..0..0....0..0..1....1..0..0....0..0..0....0..0..1....0..1..0
..0..0..1....0..0..1....0..0..1....1..0..0....1..0..1....0..0..0....0..0..0
..0..0..0....0..1..1....0..0..1....1..1..0....1..0..0....0..0..0....0..0..1
		
Showing 1-7 of 7 results.