A231391 Number of (n+1) X (3+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
14, 38, 100, 272, 740, 2061, 5834, 16521, 46969, 133864, 382377, 1093837, 3133209, 8984580, 25782696, 74034161, 212690121, 611260183, 1757248511, 5052897615, 14532031920, 41799692849, 120245136990, 345938696990, 995313138719
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..0....0..0..0..1 ..0..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1 ..0..1..1..1....0..1..1..1....1..1..1..1....0..1..1..1....0..0..1..1 ..0..0..1..1....1..0..1..1....1..1..2..2....1..0..0..0....1..1..0..0 ..0..0..1..1....0..1..0..0....1..2..2..2....1..1..0..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231396.
Formula
Empirical: a(n) = 4*a(n-1) -8*a(n-3) -8*a(n-4) +7*a(n-5) +12*a(n-6) +23*a(n-7) -42*a(n-8) -16*a(n-9) +81*a(n-10) -14*a(n-11) -52*a(n-12) +15*a(n-13) -2*a(n-14) -17*a(n-15) +4*a(n-16) +10*a(n-17) +4*a(n-18).
Comments