cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A231390 Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

7, 8, 15, 20, 31, 52, 95, 180, 351, 692, 1375, 2740, 5471, 10932, 21855, 43700, 87391, 174772, 349535, 699060, 1398111, 2796212, 5592415, 11184820, 22369631, 44739252, 89478495, 178956980, 357913951, 715827892, 1431655775, 2863311540, 5726623071
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Examples

			Some solutions for n=5:
..0..0..0....0..1..1....0..0..0....0..0..0....0..1..0....0..0..0....0..0..0
..1..1..1....1..0..1....0..0..0....1..1..1....1..0..1....0..0..0....0..0..0
..1..1..1....0..1..0....0..0..0....1..1..1....0..1..0....1..1..1....0..0..0
..2..2..2....1..0..1....0..0..0....1..1..1....1..0..1....1..1..1....1..1..1
..2..2..2....0..1..0....0..0..0....0..0..0....0..1..0....1..1..1....1..1..1
..1..1..1....0..0..1....1..1..1....0..0..0....1..0..1....0..0..0....0..0..0
		

Crossrefs

Column 2 of A231396.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>5.
Empirical g.f.: x*(7 - 6*x - 8*x^2 - 4*x^3 - 8*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)). - Colin Barker, Sep 28 2018

A231391 Number of (n+1) X (3+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

14, 38, 100, 272, 740, 2061, 5834, 16521, 46969, 133864, 382377, 1093837, 3133209, 8984580, 25782696, 74034161, 212690121, 611260183, 1757248511, 5052897615, 14532031920, 41799692849, 120245136990, 345938696990, 995313138719
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 3 of A231396.

Examples

			Some solutions for n=4
..0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..0....0..0..0..1
..0..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..1..1..1....0..1..1..1....1..1..1..1....0..1..1..1....0..0..1..1
..0..0..1..1....1..0..1..1....1..1..2..2....1..0..0..0....1..1..0..0
..0..0..1..1....0..1..0..0....1..2..2..2....1..1..0..0....1..1..0..0
		

Crossrefs

Cf. A231396.

Formula

Empirical: a(n) = 4*a(n-1) -8*a(n-3) -8*a(n-4) +7*a(n-5) +12*a(n-6) +23*a(n-7) -42*a(n-8) -16*a(n-9) +81*a(n-10) -14*a(n-11) -52*a(n-12) +15*a(n-13) -2*a(n-14) -17*a(n-15) +4*a(n-16) +10*a(n-17) +4*a(n-18).

A231392 Number of (n+1)X(4+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

33, 90, 311, 1096, 4085, 15732, 62039, 245850, 980361, 3915982, 15667453, 62726276, 251241863, 1006595336, 4033439213, 16163623302, 64777551551, 259612134798, 1040482017255, 4170131147952, 16713541804781, 66986842603436
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 4 of A231396

Examples

			Some solutions for n=5
..0..0..0..1..1....0..0..0..1..1....0..0..0..1..1....0..1..1..1..1
..0..0..0..1..1....1..1..1..0..0....1..1..1..0..0....0..0..1..1..1
..1..1..1..0..0....1..1..0..0..0....1..1..0..0..0....0..0..1..1..1
..1..1..0..0..0....0..0..1..1..1....1..1..1..0..0....0..0..0..1..1
..2..2..2..0..0....0..0..1..1..1....1..1..1..0..0....0..0..0..0..0
..2..2..2..2..2....1..1..0..0..0....1..1..1..1..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) -2*a(n-2) -28*a(n-3) -5*a(n-4) +74*a(n-5) +67*a(n-6) -29*a(n-7) -322*a(n-8) +13*a(n-9) +804*a(n-10) -816*a(n-11) +389*a(n-12) -306*a(n-13) -903*a(n-14) +1630*a(n-15) -942*a(n-16) +736*a(n-17) -1009*a(n-18) +279*a(n-19) +497*a(n-20) -83*a(n-21) +177*a(n-22) -192*a(n-23) +50*a(n-24) -96*a(n-25) -12*a(n-26) +12*a(n-27) +12*a(n-28) for n>31

A231393 Number of (n+1)X(5+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

78, 363, 1706, 8340, 41237, 217846, 1158551, 6261166, 34110556, 186830745, 1027023009, 5657597268, 31213417616, 172357775732, 952325314496, 5263831652451, 29102221456013, 160923210164607, 889929539183295
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 5 of A231396

Examples

			Some solutions for n=5
..0..0..0..0..1..1....0..0..0..0..0..0....0..1..1..1..1..0....0..1..0..1..1..1
..0..0..0..0..0..1....0..0..0..0..1..1....0..0..1..1..0..0....1..0..1..0..0..0
..2..2..0..0..1..1....0..0..1..1..1..1....0..0..1..1..0..0....0..1..0..0..0..0
..2..2..2..1..1..1....0..1..1..1..1..1....0..0..0..1..1..0....1..0..0..0..0..0
..2..2..2..1..1..1....0..0..1..1..1..1....0..0..1..0..0..1....0..1..0..0..0..0
..2..2..1..1..1..1....0..0..0..1..1..1....1..1..0..1..1..0....1..0..1..1..1..1
		

A231394 Number of (n+1) X (6+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

189, 1163, 7844, 55788, 401240, 3002376, 22654165, 172363558, 1318257485, 10111612656, 77748229719, 598602257116, 4613729527840, 35583008148173, 274559205933826, 2119156145505749, 16359927764473751, 126317242134114600
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 6 of A231396.

Examples

			Some solutions for n=4
..0..0..0..0..1..0..1....0..0..0..0..1..1..1....0..0..0..0..1..1..1
..0..0..0..1..0..1..0....0..0..0..1..1..1..1....0..0..0..1..1..1..1
..0..0..1..1..1..0..0....0..0..0..0..1..1..1....0..0..1..1..1..2..2
..0..0..1..1..1..0..0....0..0..0..0..0..0..0....0..0..0..1..2..2..2
..0..0..1..1..0..0..0....0..0..0..0..0..0..0....0..0..1..1..1..2..2
		

Crossrefs

Cf. A231396.

A231395 Number of (n+1)X(7+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

482, 3985, 35696, 345022, 3407422, 35510853, 374180527, 3979476204, 42551946612, 456361450996, 4904416040667, 52763178941654, 568116088801934, 6119806345298278, 65944807220690640, 710739805127043812
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Column 7 of A231396

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0..0....0..0..0..0..1..1..1..1....0..0..0..0..1..1..1..0
..0..0..0..0..0..1..1..1....1..1..0..1..0..1..0..0....0..0..0..0..1..1..0..0
..0..0..0..0..1..1..1..1....1..1..1..0..1..0..0..0....0..0..0..0..1..1..0..0
..2..2..0..0..1..1..1..1....0..0..0..1..1..1..0..0....0..0..0..1..1..1..0..0
..2..2..2..0..0..1..1..1....0..0..1..1..1..1..1..0....0..0..0..1..1..0..0..0
		

A231397 Number of (1+1) X (n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

3, 7, 14, 33, 78, 189, 482, 1225, 3238, 8565, 23114, 62657, 171342, 470573, 1297330, 3586745, 9934454, 27559269, 76525210, 212662577, 591289630, 1644693789, 4576035586, 12734509097, 35443628358, 98659578197, 274645954794
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Examples

			Some solutions for n=5:
..0..1..1..1..1..2....0..1..0..1..0..0....0..0..1..1..0..0....0..0..1..1..0..0
..0..0..1..1..2..2....1..0..1..0..1..1....0..0..1..1..1..0....0..0..1..1..0..0
		

Crossrefs

Row 1 of A231396.

Formula

Empirical: a(n) = 4*a(n-1) + a(n-2) - 16*a(n-3) + 4*a(n-4) + 24*a(n-5) - 16*a(n-6).
Empirical g.f.: x*(3 - 5*x - 17*x^2 + 18*x^3 + 32*x^4 - 32*x^5) / ((1 - x)*(1 - 2*x)*(1 - x - 6*x^2 + 8*x^4)). - Colin Barker, Sep 28 2018

A231398 Number of (2+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

4, 8, 38, 90, 363, 1163, 3985, 14650, 50088, 185178, 665415, 2425915, 8953631, 32773916, 121530364, 449147910, 1665804417, 6189859849, 22993326811, 85585457988, 318520365520, 1186296435208, 4419902305187, 16469639460901
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Row 2 of A231396

Examples

			Some solutions for n=6
..0..0..1..0..0..1..1....0..1..1..1..1..1..2....0..1..0..0..0..0..1
..0..1..0..1..1..0..0....0..0..1..1..1..2..2....1..0..1..1..0..1..0
..1..0..1..1..0..0..0....0..0..1..1..1..2..2....0..1..1..1..1..0..1
		

Formula

Empirical: a(n) = 4*a(n-1) +12*a(n-2) -43*a(n-3) -103*a(n-4) +278*a(n-5) +418*a(n-6) -1103*a(n-7) -883*a(n-8) +2549*a(n-9) +1514*a(n-10) -4171*a(n-11) -1969*a(n-12) +4818*a(n-13) +1876*a(n-14) -3992*a(n-15) -1124*a(n-16) +2288*a(n-17) +288*a(n-18) -752*a(n-19) +96*a(n-21)

A231399 Number of (3+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

7, 15, 100, 311, 1706, 7844, 35696, 184692, 873979, 4399412, 22162876, 110261498, 564140421, 2850848402, 14542997263, 74409026027, 380043653506, 1950717998012, 10003505335070, 51373261673575, 264098740804503, 1357567141208027
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Row 3 of A231396

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..0..1..1....0..0..0..1..1....0..1..0..1..0
..0..0..0..1..1....0..0..0..0..1....0..0..0..1..1....1..0..1..0..1
..2..2..1..1..1....0..0..0..1..0....0..0..0..1..1....0..1..0..1..1
..2..2..2..1..1....1..1..1..0..1....0..0..0..0..1....1..0..1..1..1
		

Formula

Empirical recurrence of order 83 (see link above)

A231400 Number of (4+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

12, 20, 272, 1096, 8340, 55788, 345022, 2502891, 16525492, 113585134, 799820476, 5455236715, 38507382540, 268963425191, 1882384615623, 13300278749856, 93433472155344, 659971112697126, 4663864398488500, 32941704521261841
Offset: 1

Views

Author

R. H. Hardin, Nov 08 2013

Keywords

Comments

Row 4 of A231396

Examples

			Some solutions for n=5
..0..0..0..0..0..1....0..0..0..1..1..1....0..0..1..0..1..1....0..0..0..0..0..0
..1..1..0..0..1..1....1..1..1..0..1..1....1..1..0..1..0..0....0..0..0..0..1..1
..1..1..1..1..1..1....1..1..0..0..0..0....1..1..1..0..0..0....1..1..1..1..1..1
..0..0..1..1..1..1....1..0..1..0..0..0....0..0..0..1..0..0....1..1..2..2..1..1
..0..0..0..0..0..0....0..1..0..1..1..1....0..0..1..1..1..0....1..2..2..2..2..2
		
Showing 1-10 of 14 results. Next