A231413 Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
9, 50, 285, 1617, 9188, 52193, 296511, 1684466, 9569425, 54363701, 308839124, 1754508933, 9967330587, 56624207962, 321681006005, 1827463435305, 10381783646596, 58978707645369, 335056872107879, 1903451466275938
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..1....0..0....0..1....0..1....0..0....0..1....0..1....0..1....0..1....0..1 ..0..2....1..2....0..2....0..2....1..2....0..1....1..2....0..1....0..2....2..1 ..0..1....1..2....0..1....0..1....0..1....1..2....0..2....1..0....2..1....2..0 ..2..1....1..0....2..1....1..0....2..0....1..0....2..1....2..2....0..1....1..0 ..2..0....1..2....0..2....2..0....1..2....2..2....2..0....0..1....1..2....1..0 ..0..1....0..0....0..2....2..0....0..1....1..1....2..1....0..1....1..2....2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231419.
Formula
Empirical: a(n) = 6*a(n-1) - 11*a(n-3) + 4*a(n-4).
Empirical g.f.: x*(9 - 4*x - 15*x^2 + 6*x^3) / (1 - 6*x + 11*x^3 - 4*x^4). - Colin Barker, Feb 21 2018
Comments