This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231429 #29 Jun 19 2023 22:35:31 %S A231429 1,0,0,0,0,1,2,4,8,14,22,35,53,78,113,160,222,306,416,558,743,980, %T A231429 1281,1665,2149,2755,3514,4458,5626,7070,8846,11020,13680,16920,20852, %U A231429 25618,31375,38309,46649,56651,68616,82908,99940,120192,144238,172730,206425 %N A231429 Number of partitions of 2n into distinct parts < n. %C A231429 From _Gus Wiseman_, Jun 17 2023: (Start) %C A231429 Also the number of integer compositions of n with weighted sum 3*n, where the weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i * y_i. The a(0) = 1 through a(9) = 14 compositions are: %C A231429 () . . . . (11111) (3111) (3211) (3311) (3411) %C A231429 (11211) (11311) (4121) (4221) %C A231429 (12121) (11411) (5112) %C A231429 (21112) (12221) (11511) %C A231429 (13112) (12321) %C A231429 (21131) (13131) %C A231429 (21212) (13212) %C A231429 (111122) (21231) %C A231429 (21312) %C A231429 (22122) %C A231429 (31113) %C A231429 (111141) %C A231429 (111222) %C A231429 (112113) %C A231429 For partitions we have A363527, ranks A363531. For reversed partitions we have A363526, ranks A363530. %C A231429 (End) %e A231429 a(5) = #{4+3+2+1} = 1; %e A231429 a(6) = #{5+4+3, 5+4+2+1} = 2; %e A231429 a(7) = #{6+5+3, 6+5+2+1, 6+4+3+1, 5+4+3+2} = 4; %e A231429 a(8) = #{7+6+3, 7+6+2+1, 7+6+3, 7+5+3+1, 7+4+3+2, 6+5+4+1, 6+5+3+2, 6+4+3+2+1} = 8; %e A231429 a(9) = #{8+7+3, 8+7+2+1, 8+6+4, 8+6+3+1, 8+5+4+1, 8+5+3+2, 8+4+3+2+1, 7+6+5, 7+6+4+1, 7+6+3+2, 7+5+4+2, 7+5+3+2+1, 6+5+4+3, 6+5+4+2+1} = 14. %t A231429 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Total[Accumulate[#]]==3n&]],{n,0,15}] (* _Gus Wiseman_, Jun 17 2023 *) %o A231429 (Haskell) %o A231429 a231429 n = p [1..n-1] (2*n) where %o A231429 p _ 0 = 1 %o A231429 p [] _ = 0 %o A231429 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m %Y A231429 Cf. A209815, A079122. %Y A231429 A000041 counts integer partitions, strict A000009. %Y A231429 A053632 counts compositions by weighted sum. %Y A231429 A264034 counts partitions by weighted sum, reverse A358194. %Y A231429 A304818 gives weighted sum of prime indices, reverse A318283. %Y A231429 A320387 counts multisets by weighted sum, zero-based A359678. %Y A231429 Cf. A008284, A029931, A067538, A222855, A222955, A222970, A359042, A360672, A360675, A362559. %K A231429 nonn %O A231429 0,7 %A A231429 _Reinhard Zumkeller_, Nov 14 2013