A231519 Number of n X 4 0..1 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors.
7, 107, 865, 7697, 66499, 571226, 4944075, 42759650, 369356733, 3191749214, 27585602947, 238391033438, 2060118342038, 17803462264679, 153856523007378, 1329613892196866, 11490414159104930, 99299276258131228, 858136420916602390
Offset: 1
Keywords
Examples
Some solutions for n=5 ..1..0..0..1....0..0..1..1....0..0..1..1....0..0..1..0....0..0..1..1 ..1..0..0..1....0..0..0..1....1..0..0..1....0..1..0..1....1..1..0..1 ..1..0..0..0....0..1..1..0....0..0..1..0....0..0..1..1....1..0..0..0 ..1..0..0..1....0..0..0..1....1..0..0..1....0..0..1..1....1..0..0..0 ..0..0..1..1....1..0..1..1....1..0..0..0....0..1..1..1....0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A231523.
Formula
Empirical: a(n) = 7*a(n-1) +3*a(n-2) +117*a(n-3) -96*a(n-4) -500*a(n-5) -1683*a(n-6) -40*a(n-7) +4807*a(n-8) +6898*a(n-9) -181*a(n-10) -9621*a(n-11) -10107*a(n-12) -734*a(n-13) -9567*a(n-14) -4385*a(n-15) +24373*a(n-16) +1907*a(n-17) -17636*a(n-18) +2087*a(n-19) +6490*a(n-20) +1542*a(n-21) -233*a(n-22) -560*a(n-23) -36*a(n-24) for n > 25.
Comments