cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231523 T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors.

Original entry on oeis.org

2, 2, 4, 4, 10, 8, 7, 34, 21, 16, 12, 107, 153, 48, 32, 21, 342, 865, 776, 113, 64, 37, 1069, 4665, 7697, 3861, 261, 128, 65, 3381, 25556, 70462, 66499, 18721, 601, 256, 114, 10689, 144847, 680302, 1031105, 571226, 91993, 1390, 512, 200, 33808, 817539
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2013

Keywords

Comments

Table starts
....2....2........4..........7...........12..............21................37
....4...10.......34........107..........342............1069..............3381
....8...21......153........865.........4665...........25556............144847
...16...48......776.......7697........70462..........680302...........6935963
...32..113.....3861......66499......1031105........17572772.........322599407
...64..261....18721.....571226.....15000701.......451200772.......14940780666
..128..601....91993....4944075....219937967.....11683058939......697702378939
..256.1390...453274...42759650...3222629836....302190345444....32529760276112
..512.3216..2223662..369356733..47159743290...7806399525348..1514885617016157
.1024.7435.10915727.3191749214.690399979855.201765495180944.70592106166184098

Examples

			Some solutions for n=4 k=4
..1..0..0..0....1..0..1..1....1..1..0..1....0..0..0..0....0..1..0..1
..1..0..0..0....0..0..0..1....1..0..0..0....0..0..0..1....1..0..0..0
..0..0..0..0....0..0..1..0....0..0..0..1....1..0..0..1....1..0..1..0
..0..1..1..1....0..0..0..0....0..1..0..0....0..0..0..1....0..0..0..1
		

Crossrefs

Column 1 is A000079
Column 2 is A231376
Row 1 is A005251(n+2)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) -a(n-5) for n>6
k=3: [order 13] for n>14
k=4: [order 24] for n>25
k=5: [order 70] for n>71
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3) +6*a(n-4) -18*a(n-5)
n=3: [order 16] for n>17
n=4: [order 39] for n>40