A231523 T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors.
2, 2, 4, 4, 10, 8, 7, 34, 21, 16, 12, 107, 153, 48, 32, 21, 342, 865, 776, 113, 64, 37, 1069, 4665, 7697, 3861, 261, 128, 65, 3381, 25556, 70462, 66499, 18721, 601, 256, 114, 10689, 144847, 680302, 1031105, 571226, 91993, 1390, 512, 200, 33808, 817539
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..0....1..0..1..1....1..1..0..1....0..0..0..0....0..1..0..1 ..1..0..0..0....0..0..0..1....1..0..0..0....0..0..0..1....1..0..0..0 ..0..0..0..0....0..0..1..0....0..0..0..1....1..0..0..1....1..0..1..0 ..0..1..1..1....0..0..0..0....0..1..0..0....0..0..0..1....0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..220
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) -a(n-5) for n>6
k=3: [order 13] for n>14
k=4: [order 24] for n>25
k=5: [order 70] for n>71
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3) +6*a(n-4) -18*a(n-5)
n=3: [order 16] for n>17
n=4: [order 39] for n>40
Comments