This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231533 #13 Nov 12 2013 16:38:27 %S A231533 9,2,8,5,6,0,7,7,7,3,2,1,8,4,5,5,8,6,6,6,7,2,0,2,9,3,2,8,5,6,6,9,8,7, %T A231533 2,0,2,8,9,8,6,9,7,4,6,3,3,1,5,6,5,6,5,9,9,9,2,3,1,4,8,3,3,9,0,9,9,5, %U A231533 0,0,6,1,7,0,2,6,0,3,6,5,9,7,6,7,1,9,0,7,4,5,8,4,5,5,1,2,2,7,1,8,1,0,0,7,1 %N A231533 Decimal expansion of the negative imaginary part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I). %C A231533 Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the negative imaginary part of the complex expim(1,1). The decimal expansion of the real part is in A231532 and that of the absolute value in A231534. %H A231533 Stanislav Sykora, <a href="/A231533/b231533.txt">Table of n, a(n) for n = 0..10000</a> %F A231533 imag(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))). %e A231533 -0.92856077732184558666720293... %o A231533 (PARI) Expim(x,y)={local (c,k,lastval,val);c = 1.0+0.0*I;lastval = c;k = 1; while (k,c*=x/(k + y*I);val = lastval + c;if (val==lastval, break); lastval = val;k += 1;);return (val);} %o A231533 imag(Expim(1,1)) %Y A231533 Cf. A231532, A231534, and A231530, A231531 (respectively the real and imaginary parts of the expansion coefficient's denominators). %K A231533 nonn,cons %O A231533 0,1 %A A231533 _Stanislav Sykora_, Nov 10 2013