This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231551 #42 Sep 22 2024 17:47:35 %S A231551 0,1,2,3,4,7,6,5,8,15,14,9,12,11,10,13,16,31,30,17,28,19,18,29,24,23, %T A231551 22,25,20,27,26,21,32,63,62,33,60,35,34,61,56,39,38,57,36,59,58,37,48, %U A231551 47,46,49,44,51,50,45,40,55,54,41,52,43,42,53,64,127,126,65 %N A231551 Position of n in A231550. %C A231551 This permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A020651/A020650, and A162911/A162912 (Drib) the enumeration system into A245327/A245326. - _Yosu Yurramendi_, Jun 16 2015 %H A231551 Ivan Neretin, <a href="/A231551/b231551.txt">Table of n, a(n) for n = 0..8192</a> %H A231551 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the nonnegative integers</a> %F A231551 A231550(a(n)) = a(A231550(n)) = n. %F A231551 a(n) = A258996(A284460(n)) = A284459(A092569(n)), n > 0. - _Yosu Yurramendi_, Apr 10 2017 %F A231551 a(n) = A054429(A153154(n)), n > 0. - _Yosu Yurramendi_, Oct 04 2021 %t A231551 Join[{0, 1}, Table[d = Reverse@IntegerDigits[n, 2]; FromDigits[Reverse@Append[FoldList[BitXor, d[[1]], Most@Rest@d], d[[-1]]], 2], {n, 2, 67}]] (* _Ivan Neretin_, Dec 28 2016 *) %o A231551 (Python) %o A231551 for n in range(99): %o A231551 bits = [0]*64 %o A231551 orig = [0]*64 %o A231551 l = int.bit_length(int(n)) %o A231551 t = n %o A231551 for i in range(l): %o A231551 bits[i] = orig[i] = t&1 %o A231551 t>>=1 %o A231551 #for i in range(1, l-1): bits[i] ^= orig[i-1] # A231550 %o A231551 for i in range(1, l-1): bits[i] ^= bits[i-1] # A231551 %o A231551 #for i in range(l-1): bits[i] ^= orig[i+1] # A003188 %o A231551 #for i in range(1, l): bits[l-1-i] ^= bits[l-i] # A006068 %o A231551 t = 0 %o A231551 for i in range(l): t += bits[i]<<i %o A231551 print(str(t), end=', ') %o A231551 (R) %o A231551 maxrow <- 8 # by choice %o A231551 b01 <- 0 # b01 is going to be A010059 %o A231551 a <- 1 %o A231551 for(m in 0:maxrow) for(k in 0:(2^m-1)){ %o A231551 b01[2^(m+1)+ k] <- b01[2^m+k] %o A231551 a[2^(m+1)+ k] <- a[2^m+k] + 2^(m+b01[2^(m+1)+ k]) %o A231551 b01[2^(m+1)+2^m+k] <- 1 - b01[2^m+k] %o A231551 a[2^(m+1)+2^m+k] <- a[2^m+k] + 2^(m+b01[2^(m+1)+2^m+k]) %o A231551 } %o A231551 (a <- c(0,a)) %o A231551 # _Yosu Yurramendi_, Apr 10 2017 %o A231551 (R) %o A231551 maxblock <- 8 # by choice %o A231551 a <- 1:3 %o A231551 for(n in 4:2^maxblock){ %o A231551 ones <- which(as.integer(intToBits(n)) == 1) %o A231551 nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)] %o A231551 anbit <- nbit %o A231551 for(i in 2:(length(anbit) - 1)) %o A231551 anbit[i] <- bitwXor(anbit[i], anbit[i-1]) # ?bitwXor %o A231551 a <- c(a, sum(anbit*2^(0:(length(anbit) - 1)))) %o A231551 } %o A231551 (a <- c(0,a)) %o A231551 # _Yosu Yurramendi_, Apr 25 2021 %Y A231551 Cf. A003188, A006068, A231550. %K A231551 nonn,easy,look %O A231551 0,3 %A A231551 _Alex Ratushnyak_, Nov 10 2013