cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231561 Number of ways to write n = x + y with 0 < x <= y such that 2^x * y + 1 is prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 1, 4, 5, 2, 2, 3, 3, 2, 2, 2, 4, 4, 3, 5, 4, 4, 3, 5, 4, 5, 4, 3, 3, 2, 3, 5, 5, 4, 4, 3, 3, 7, 5, 6, 4, 6, 5, 4, 6, 5, 5, 5, 3, 5, 6, 7, 8, 4, 4, 3, 4, 2, 3, 5, 6, 7, 7, 4, 3, 6, 6, 6, 8, 3, 4, 7, 7, 6, 6, 5, 7, 6, 7, 8, 5, 6, 5, 7, 2, 5, 5, 7, 5, 7, 6, 10, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 11 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Also, any integer n > 1 can be written as x + y (x, y > 0) with 2^x * y^2 + 1 prime.
(ii) Each integer n > 2 can be written as x + y (x, y > 0) with 2^x * y - 1 prime. Also, every n = 3, 4, ... can be expressed as x + y (x, y > 0) with 2^x * y^2 - 1 prime.

Examples

			a(7) = 1 since 7 = 1 + 6 with 2^1 * 6 + 1 = 13 prime.
a(14) = 1 since 14 = 3 + 11 with 2^3 * 11 + 1 = 89 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^x*(n-x)+1],1,0],{x,1,n/2}]
    Table[a[n],{n,1,100}]