This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231562 #11 Mar 12 2015 20:10:16 %S A231562 39607528021345872635,118822584064037617905,198037640106729363175, %T A231562 356467752192112853715,435682808234804598985,514897864277496344255, %U A231562 594112920320188089525,673327976362879834795,752543032405571580065,910973144490955070605,990188200533646815875 %N A231562 Numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n). %C A231562 The number 8490421583559688410706771261086 occurring in the name is the 8th term of A230311. %C A231562 The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty. %H A231562 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a> %t A231562 fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, 1]] - 1)], n/fa[n][[i,1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k, n], Mod[Car[k, n] - n/2,]]; Select[39607528021345872635*Range[15],supercar[8490421583559688410706771261086*#, 8490421583559688410706771261086*#] == # &] %Y A231562 Cf. A031971, A230311. %Y A231562 Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)). %Y A231562 Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)). %Y A231562 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)). %Y A231562 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)). %Y A231562 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)). %Y A231562 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)). %Y A231562 Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)). %Y A231562 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)). %Y A231562 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)). %Y A231562 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)). %Y A231562 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)). %Y A231562 Cf. A229308 (primitive numbers in A229304). %Y A231562 Cf. A229309 (primitive numbers in A229305). %Y A231562 Cf. A229310 (primitive numbers in A229306). %Y A231562 Cf. A229311 (primitive numbers in A229307). %K A231562 nonn %O A231562 1,1 %A A231562 _José María Grau Ribas_, Nov 16 2013