A231581 Number of nX2 0..3 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.
4, 28, 124, 602, 2776, 12922, 60720, 286047, 1335296, 6256326, 29377828, 137595239, 644951590, 3024402309, 14175895645, 66459189937, 311583082104, 1460702584712, 6848241858778, 32106603868468, 150524267596760, 705711781367756
Offset: 1
Keywords
Examples
Some solutions for n=7 ..0..0....3..0....2..1....0..3....2..0....2..3....2..2....1..1....3..3....0..0 ..0..2....0..0....1..1....0..0....0..0....2..2....0..0....2..1....0..0....0..1 ..1..0....0..0....0..0....0..1....1..0....3..2....0..0....1..2....0..0....0..0 ..0..0....0..2....0..0....0..2....0..0....1..1....1..3....0..0....0..3....3..0 ..2..0....0..1....0..2....0..0....0..1....1..1....0..0....0..0....0..0....0..1 ..2..0....0..0....2..0....0..0....0..0....1..1....0..0....0..0....3..0....0..0 ..0..0....0..0....0..0....2..0....3..0....2..1....2..3....0..2....0..0....0..3
Links
- Robert Israel, Table of n, a(n) for n = 1..1488 (first 210 terms from R. H. Hardin)
- Robert Israel, Maple-assisted proof of formula
Programs
-
Maple
rec:= a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16): Data := [4, 28, 124, 602, 2776, 12922, 60720, 286047, 1335296, 6256326, 29377828, 137595239, 644951590, 3024402309, 14175895645, 66459189937]: f:= gfun:-rectoproc({rec,seq(a(i)=Data[i],i=1..16)},a(n),remember): map(f, [$1..40]); # Robert Israel, Dec 06 2017
Formula
Empirical: a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16).
Empirical formula verified by Robert Israel, Dec 06 2017 (see link).
Comments