cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231581 Number of nX2 0..3 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

4, 28, 124, 602, 2776, 12922, 60720, 286047, 1335296, 6256326, 29377828, 137595239, 644951590, 3024402309, 14175895645, 66459189937, 311583082104, 1460702584712, 6848241858778, 32106603868468, 150524267596760, 705711781367756
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2013

Keywords

Comments

Column 2 of A231586

Examples

			Some solutions for n=7
..0..0....3..0....2..1....0..3....2..0....2..3....2..2....1..1....3..3....0..0
..0..2....0..0....1..1....0..0....0..0....2..2....0..0....2..1....0..0....0..1
..1..0....0..0....0..0....0..1....1..0....3..2....0..0....1..2....0..0....0..0
..0..0....0..2....0..0....0..2....0..0....1..1....1..3....0..0....0..3....3..0
..2..0....0..1....0..2....0..0....0..1....1..1....0..0....0..0....0..0....0..1
..2..0....0..0....2..0....0..0....0..0....1..1....0..0....0..0....3..0....0..0
..0..0....0..0....0..0....2..0....3..0....2..1....2..3....0..2....0..0....0..3
		

Programs

  • Maple
    rec:= a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16):
    Data := [4, 28, 124, 602, 2776, 12922, 60720, 286047, 1335296, 6256326, 29377828, 137595239, 644951590, 3024402309, 14175895645, 66459189937]:
    f:= gfun:-rectoproc({rec,seq(a(i)=Data[i],i=1..16)},a(n),remember):
    map(f, [$1..40]); # Robert Israel, Dec 06 2017

Formula

Empirical: a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16).
Empirical formula verified by Robert Israel, Dec 06 2017 (see link).