This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231588 #11 Aug 05 2022 15:50:16 %S A231588 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, %T A231588 97,109,173,197,307,383,593,727,739,937,2963,4567,4703,5791,7159,8147, %U A231588 9371,10987,15937,19753,37159,52963,53197,58147,71593,72727,73951,76543 %N A231588 Primes with decimal digits in arithmetic progression mod 10. %C A231588 This sequence contains straight-line primes (A167847). %C A231588 a(216) has 1012 digits. - _Michael S. Branicky_, Aug 05 2022 %H A231588 Michael S. Branicky, <a href="/A231588/b231588.txt">Table of n, a(n) for n = 1..215</a> (terms 1..147 from Paul Tek) %H A231588 Paul Tek, <a href="/A231588/a231588.txt">PARI program for this sequence</a> %e A231588 (7,2,7,2,7,...) is an arithmetic progression mod 10, hence the prime number 72727 appears in this sequence. %e A231588 (7,6,5,4,3,...) is an arithmetic progression mod 10, hence the prime number 76543 appears in this sequence. %t A231588 Select[Prime[Range[PrimePi[76543]]], Length[Union[Mod[Differences[IntegerDigits[#]], 10]]] <= 1 &] %o A231588 (PARI) See Link section. %o A231588 (Python) %o A231588 from sympy import isprime %o A231588 from itertools import count, islice %o A231588 def bgen(): %o A231588 yield from [2, 3, 5, 7] %o A231588 yield from (int("".join(str((s0+i*r)%10) for i in range(d))) for d in count(2) for s0 in range(1, 10) for r in range(-s0, 10-s0)) %o A231588 def agen(): yield from filter(isprime, bgen()) %o A231588 print(list(islice(agen(), 52))) # _Michael S. Branicky_, Aug 05 2022 %Y A231588 Cf. A167847. %K A231588 base,nonn %O A231588 1,1 %A A231588 _Paul Tek_, Nov 11 2013