cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A231590 Total number of 1's digits in primes less than 10^n.

Original entry on oeis.org

0, 9, 78, 681, 6353, 59634, 570157, 5510645, 53680317, 525651276, 5166809159, 50931212973, 503152799893, 4979293536415
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=9, since there are 9 1's in primes less than 100. Namely: 11, 13, 17, 19, 31, 41, 61, 71.  Note that 11 counts for two.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 1, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231411 Total number of zero digits in primes less than 10^n.

Original entry on oeis.org

0, 0, 15, 232, 2725, 30350, 324133, 3386986, 34984325, 358604948, 3657365837, 37164550469, 376613845818, 3808514755978
Offset: 1

Views

Author

Robert Price, Nov 08 2013

Keywords

Examples

			a(3)=15, since there are 15 zeros in primes less than 1000.  Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n-1]]]], 0, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231591 Total number of 2's digits in primes less than 10^n.

Original entry on oeis.org

1, 3, 32, 391, 3906, 39572, 400626, 4047829, 40794211, 410514052, 4126066282, 41436122092, 415853103290, 4171375888398
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=3, since there are 3 2's in primes less than 100. Namely: 2, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 2, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231592 Total number of 3's digits in primes less than 10^n.

Original entry on oeis.org

1, 9, 75, 677, 6229, 58770, 564650, 5472472, 53396224, 523382007, 5148387363, 50778098799, 501864775685, 4968288427006
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=9, since there are 9 3's in primes less than 100. Namely: 3, 13, 23, 31, 37, 43, 53, 73, 83.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 3, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231593 Total number of 4's digits in primes less than 10^n.

Original entry on oeis.org

0, 3, 34, 360, 3772, 39006, 397474, 4022501, 40604951, 408986159, 4113511677, 41331763006, 414971464358, 4163826451096
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=3, since there are 3 4's in primes less than 100. Namely: 41, 43, 47.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 4, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231594 Total number of 5's digits in primes less than 10^n.

Original entry on oeis.org

1, 3, 33, 360, 3816, 38911, 396016, 4015732, 40543671, 408462140, 4109293287, 41296082801, 414669334188, 4161237526152
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=3, since there are 3 5's in primes less than 100. Namely: 5, 53, 59.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 5, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231595 Total number of 6's digits in primes less than 10^n.

Original entry on oeis.org

0, 2, 33, 369, 3741, 38714, 395621, 4007705, 40484195, 408035120, 4105718243, 41266320918, 414416274953, 4159068898063
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=2, since there are 2 6's in primes less than 100. Namely: 61, 67.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 6, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231596 Total number of 7's digits in primes less than 10^n.

Original entry on oeis.org

1, 9, 78, 652, 6172, 58327, 560506, 5443074, 53152746, 521422184, 5132090751, 50642752951, 500714890907, 4958432528817
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=9, since there are 9 7's in primes less than 100. Namely: 7, 17, 37, 47, 67, 71, 73, 79, 97.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 7, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015

A231597 Total number of 8's digits in primes less than 10^n.

Original entry on oeis.org

0, 2, 30, 351, 3690, 38541, 394398, 3998411, 40399778, 407316676, 4099892369, 41217744252, 414006129652, 4155543234392
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Examples

			a(2)=2, since there are 2 8's in primes less than 100. Namely: 83, 89.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Prime[Range[PrimePi[10^n - 1]]]], 8, 2], {n, 7}] (* Robert Price, Jun 16 2019 *)

Extensions

a(14) from Giovanni Resta, Jul 20 2015
Showing 1-9 of 9 results.