This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A231599 #61 Aug 02 2024 04:33:00 %S A231599 1,1,-1,1,-1,-1,1,1,-1,-1,0,1,1,-1,1,-1,-1,0,0,2,0,0,-1,-1,1,1,-1,-1, %T A231599 0,0,1,1,1,-1,-1,-1,0,0,1,1,-1,1,-1,-1,0,0,1,0,2,0,-1,-1,-1,-1,0,2,0, %U A231599 1,0,0,-1,-1,1,1,-1,-1,0,0,1,0,1,1,0,-1,-1,-2,0 %N A231599 T(n,k) is the coefficient of x^k in Product_{i=1..n} (1-x^i); triangle T(n,k), n >= 0, 0 <= k <= A000217(n), read by rows. %C A231599 From _Tilman Piesk_, Feb 21 2016: (Start) %C A231599 The sum of each row is 0. The even rows are symmetric; in the odd rows numbers with the same absolute value and opposed signum are symmetric to each other. %C A231599 The odd rows where n mod 4 = 3 have the central value 0. %C A231599 The even rows where n mod 4 = 0 have positive central values. They form the sequence A269298 and are also the rows maximal values. %C A231599 A086376 contains the maximal values of each row, A160089 the maximal absolute values, and A086394 the absolute parts of the minimal values. %C A231599 Rows of this triangle can be used to efficiently calculate values of A026807. %C A231599 (End) %H A231599 Alois P. Heinz, <a href="/A231599/b231599.txt">Rows n = 0..40, flattened</a> %H A231599 Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.37193/CJM.2019.01.01">On some results concerning the polygonal polynomials</a>, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11. %H A231599 Tilman Piesk, Rows n = 0..40 as <a href="http://paste.watchduck.net/1602/A231599_left.html">left-aligned</a> and <a href="http://paste.watchduck.net/1602/A231599_centered.html">centered</a> table %F A231599 T(n,k) = [x^k] Product_{i=1..n} (1-x^i). %F A231599 T(n,k) = T(n-1, k) + (-1)^n*T(n-1, n*(n+1)/2-k), n > 1. - _Gevorg Hmayakyan_, Feb 09 2017 [corrected by _Giuliano Cabrele_, Mar 02 2018] %e A231599 For n=2 the corresponding polynomial is (1-x)*(1-x^2) = 1 -x - x^2 + x^3. %e A231599 Irregular triangle starts: %e A231599 k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A231599 n %e A231599 0 1 %e A231599 1 1 -1 %e A231599 2 1 -1 -1 1 %e A231599 3 1 -1 -1 0 1 1 -1 %e A231599 4 1 -1 -1 0 0 2 0 0 -1 -1 1 %e A231599 5 1 -1 -1 0 0 1 1 1 -1 -1 -1 0 0 1 1 -1 %p A231599 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p))) %p A231599 (expand(mul(1-x^i, i=1..n))): %p A231599 seq(T(n), n=0..10); # _Alois P. Heinz_, Dec 22 2013 %t A231599 Table[If[k == 0, 1, Coefficient[Product[(1 - x^i), {i, n}], x^k]], {n, 0, 6}, {k, 0, (n^2 + n)/2}] // Flatten (* _Michael De Vlieger_, Mar 04 2018 *) %o A231599 (PARI) row(n) = pol = prod(i=1, n, 1 - x^i); for (i=0, poldegree(pol), print1(polcoeff(pol, i), ", ")); \\ _Michel Marcus_, Dec 21 2013 %o A231599 (Python) %o A231599 from sympy import poly, symbols %o A231599 def a231599_row(n): %o A231599 if n == 0: %o A231599 return [1] %o A231599 x = symbols('x') %o A231599 p = 1 %o A231599 for i in range(1, n+1): %o A231599 p *= poly(1-x**i) %o A231599 p = p.all_coeffs() %o A231599 return p[::-1] %o A231599 # _Tilman Piesk_, Feb 21 2016 %Y A231599 Cf. A000217 (triangular numbers). %Y A231599 Cf. A086376, A160089, A086394 (maxima, etc.). %Y A231599 Cf. A269298 (central nonzero values). %K A231599 sign,look,tabf %O A231599 0,20 %A A231599 _Marc Bogaerts_, Nov 11 2013